Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
J. E. Ramirez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1045-1066, August 31–September 3, 2010,
Abstract
View Paper
PDF
Inconel alloy 740 is a precipitation-hardenable nickel-chromium-cobalt alloy with niobium, derived from Nimonic 263, and is considered a prime candidate for the demanding conditions of advanced ultrasupercritical boilers. It offers an exceptional combination of stress rupture strength and corrosion resistance under steam conditions of 760°C (1400°F) and 34.5 MPa (5000 psi), surpassing other candidate alloys. Initially, Inconel alloy 740 was prone to liquation cracking in sections thicker than 12.7 mm (0.50 in), but this issue has been resolved through modifications in the chemical composition of both the base and weld metals. Current concerns focus on the weld strength reduction factor for direct-age weldments. This has led to further development in welding Inconel alloy 740 using Haynes 282, which has higher creep strength and may mitigate the weld strength reduction factor. This study details successful efforts to eliminate liquation cracking and compares the properties of Inconel alloy 740 and Haynes 282 filler materials using the gas tungsten arc welding process.