Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
J. Cinert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Post-Treatment of Plasma Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering
Available to Purchase
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 617-622, May 21–23, 2014,
Abstract
View Papertitled, Post-Treatment of Plasma Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering
View
PDF
for content titled, Post-Treatment of Plasma Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering
Alumina-zirconia ceramic material has been plasma sprayed using a water stabilized plasma torch (WSP) to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization while at the same time a uniaxial pressure of 80 GPa has been applied to the their surface. After such post-treatment, the ceramic samples are crystalline and exhibit very low open porosity. The as-sprayed amorphous materials also exhibit high hardness and high abrasion resistance. Both properties are significantly improved in the heat-treated samples whose microstructure is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.