Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Izak Kapilevich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Marginal Failure Diagnosed with LADA—Case Studies
Available to Purchase
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 358-364, November 9–13, 2014,
Abstract
View Papertitled, Marginal Failure Diagnosed with LADA—Case Studies
View
PDF
for content titled, Marginal Failure Diagnosed with LADA—Case Studies
During the early stage of process development, the major activities are yield ramp up with DFT test such as Memory BIST and SCAN test. There are plenty of commercial and inhouse diagnostics tools for DFT so in case of failure FA procedures are rather simple and standardized: run EDA tool, get fail location, perform pFA then feedback to process engineering. However in the case of marginal failure FA procedures are generally more complicated. FA engineer should consider many different scenarios to find the root cause. The marginal voltage fail is caused by many different reasons. The analysis of marginal fail is of course very important to screen out healthy devices and detect any problem of process technology or design methodology. In this paper, the authors deal with three marginal voltage fail case studies: scan chain fail, digital function fail and analog function fail. Throughout these case studies, LADA was successfully used to define the fault location. The reason of device alteration was well explained with further study. It is obvious that LADA is a very effective way to analyze marginal failures in cases where the FA engineer doesn’t have much design information because the results are very intuitive and clear. There is little doubt of LADA results accuracy because LADA is utilizing the tester to make an accurate Pass/Fail decision. LADA results are direct indication of device sensitivity to parametric changes, in our case voltage margin.
Proceedings Papers
Volume Electrical Failure Analysis for Product-Specific Yield Enhancement
Available to Purchase
ISTFA2010, ISTFA 2010: Conference Proceedings from the 36th International Symposium for Testing and Failure Analysis, 38-48, November 14–18, 2010,
Abstract
View Papertitled, Volume Electrical Failure Analysis for Product-Specific Yield Enhancement
View
PDF
for content titled, Volume Electrical Failure Analysis for Product-Specific Yield Enhancement
Yield on specific designs often falls far short of predicted yield, especially at new technology nodes. Product-specific yield ramp is particularly challenging because the defects are, by definition, specific to the design, and often require some degree of design knowledge to isolate the failure. Despite the wide variety of advanced electrical failure analysis (EFA) techniques available today, they are not routinely applied during yield ramp. EFA techniques typically require a significant amount of test pattern customization, fixturing modification, or design knowledge. Unless the problem is critical, there is usually not time to apply advanced EFA techniques during yield ramp, despite the potential of EFA to provide valuable defect insight. We present a volume-oriented workflow integrating a limited set of electrical failure analysis (EFA) techniques. We believe this workflow will provide significant benefit by improving defect localization and identification beyond what is available using test-based techniques.