Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
I. Tirtom
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 714-721, May 3–5, 2010,
Abstract
View Paper
PDF
Cold spray deposition of polycarbonate on the various substrates has been investigated. The polycarbonate particles are sieved and accelerated at elevated temperature in air through a DeLaval type nozzle, and are deposited on the metallic and ceramic substrates. The influences of the particle size, the gas temperature, the thermal conductivity and surface roughness of substrate on the deposition process are studied. As a result, the continuous deposits are formed on the metallic substrate. The powder sieved below 300 μm shows better deposition efficiency. Thin film of melted polycarbonate has been formed on the surface of substrate to act as a bonding layer, and its crystalline structure is changed to be amorphous, which is the more stable state for the polycarbonate. The coating seems to be better when the thermal conductivity of metallic substrate is low. For the ceramic substrates, there is no deposition whatever was the thermal conductivity.