Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Hyun Woo Shim
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 206-210, October 30–November 3, 2022,
Abstract
View Paper
PDF
Automated TEM lamella preparation using the remote CAD to SEM image alignment has been demonstrated for high volume failure analysis. The proposed method not only provides a secure means of using CAD design data during the lamella prep process, but offers an improved flexibility compared to conventional methods of processing CAD design file in a tool environment. The experiment showed that the new method is 3.1 times higher in throughput and requires 74 times less manhours, compared to manual process.
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 126-129, October 31–November 4, 2021,
Abstract
View Paper
PDF
This study shows that a high-volume TEM workflow can be achieved for inline defect characterization by adding a defect marking step using commercially available tools. A simple user-assisted defect marking procedure added to a conventional automated ex-situ lift-out TEM workflow increased throughput by a factor of nearly three and reduced man-hours by an order of magnitude, a significant improvement over conventional TEM workflows.