Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Horst Blumtritt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2009, ISTFA 2009: Conference Proceedings from the 35th International Symposium for Testing and Failure Analysis, 162-165, November 15–19, 2009,
Abstract
View Papertitled, Failure Analysis of Breakdown Sites in Silicon Solar Cells
View
PDF
for content titled, Failure Analysis of Breakdown Sites in Silicon Solar Cells
In this contribution the use of electroluminescence imaging, bias-dependent lock-in thermography, special dark and illuminated lock-in thermography techniques, and electron microscopy techniques is demonstrated for investigating the physical mechanism of breakdown in multicrystalline silicon solar cells. Two dominant breakdown mechanisms are identified, which are breakdown at recombination-active crystal defects, showing a relatively soft breakdown, and avalanche breakdown at dislocation-induced etch pits, which occurs very steep (hard breakdown) and dominates in our cells at high reverse bias.