Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Hirohumi Tateyama
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 340-344, November 9–13, 2014,
Abstract
View Papertitled, Development of DPA (Destructive Physical Analysis) Method for Cu Wire Device
View
PDF
for content titled, Development of DPA (Destructive Physical Analysis) Method for Cu Wire Device
Destructive physical analysis (DPA) is one of the reliability evaluation methods, which observes defects and faults in a device, and it can classify the reliability level of the device. After a description of the current method for Au wires, this paper explains the DPA for a Cu wire device. The DPA for semiconductor devices is divided roughly into three steps: a non-destructive inspection, an assembly process inspection, and a wafer process inspection. Investigation of DPA for Cu wire device includes wire material identification, optimization of decapsulation for Cu wire device and wire pull strength test, and observation of package cross-section. From the result, novel sample preparation (embedding a sample in molding package and forming the package to be suitable for cross-sectional observation by ion polishing) enables the observation of the thin alloy layer at the wire/pad interface.