Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Heiner Oesterlin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1103-1113, October 15–18, 2024,
Abstract
View Paper
PDF
The efforts of the European Union and Germany in particular to realize the transformation towards a climate-neutral economy over the coming decades have the establishing of a hydrogen economy as a fundamental milestone. This includes production, import, storage, transportation and utilization of great amounts of gaseous hydrogen in existing and new infrastructure. Metallic materials, mainly steels, are the most widely used structural materials in the various components of this supply chain. Therefore, the accelerated use of hydrogen requires the qualification of materials (i.e., ensuring they are hydrogen-ready) to guarantee the sustainable and safe implementation of hydrogen technologies. However, there is currently no easily applicable and standardized method to efficiently determine the impact of gaseous hydrogen on metallic materials. The few existing standards describe procedures that are complex, expensive, and only available to a limited extent globally. This article outlines the key milestones towards standardizing an efficient testing method as part of the TransHyDE flagship project. This new approach enables testing of metallic materials in gaseous hydrogen using tubular specimens. It uses only a fraction of the hydrogen required by the traditional autoclave method, significantly reducing costs associated with technical safety measures. Among the topics to be discussed are the factors influencing the test procedure, including geometrical considerations, surface quality, gas purity and strain rate.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 247-259, October 11–14, 2016,
Abstract
View Paper
PDF
A material test loop has been installed at GKM Mannheim, which enables thick-walled components of future highly-efficient power plants to be exposed to steam temperatures of up to 725 °C. The project goal was to demonstrate the feasibility of a 700 °C power plant.