Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
H.J. Maier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 37-40, May 11–14, 2015,
Abstract
View Paper
PDF
In this research project a hybrid technology is developed to repair turbine blades. This technology incorporates procedural and manufacturing aspects like raising the degree of automation or lowering the effort of machining and includes materials mechanisms (e.g. diffusion processes) as well. Taking into account these aspects it is possible to shorten the process chain for regenerating turbine blades. In this study the turbine blades of the high pressure turbine are considered and therefore nickel-based alloys are regarded. To repair or regenerate turbine blades the following methods are employed: welding and brazing and a subsequent aluminizing CVD-process. The focus in this work lies on the brazing method and the required filler-metal is applied together with the hot-gas corrosion protective coating by means of thermal spraying and represents the first stage of this hybrid technology. In the second stage of this hybrid technology the brazing process is integrated into the aluminizing CVD-process and a first effort is presented here.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 753-755, May 11–14, 2015,
Abstract
View Paper
PDF
Be it to save the environment or to save money, engineers everywhere attempt to use materials which can’t normally withstand the surface stress they will be exposed to on their own. This is one of the reasons for the constant interest in new and innovative coating technologies. One such innovation is the transplantation of thermal sprayed coatings. In the transplantation process the coating is integrated into a high-pressure die casting process. In contrast to the conventional process chain, the coating is not directly applied to the work piece, but to a mold insert. During the pressure casting the melt infiltrates the coating and thus creates a join. This way the coating is indirectly applied to the die-cast work piece after removal from the mold. Additionally, depending on the materials involved, a material bonding connection similar to brazing is possible and results in an increased adhesion of the coating. A potentially very interesting trait of the transplantation process is, turning an internal coating process into an external coating process. This allows the coating of inside diameters well below the usual limit of an internal spray gun. Due to the high geometric accuracy of the process this can be potentially done without any need for additional finishing steps.