Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
H. Yamano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Effects of Substrate Temperature During Thermal Spray Deposition on Mechanical Properties of Ceramic Coating
Available to Purchase
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 977-982, May 14–16, 2007,
Abstract
View Papertitled, Effects of Substrate Temperature During Thermal Spray Deposition on Mechanical Properties of Ceramic Coating
View
PDF
for content titled, Effects of Substrate Temperature During Thermal Spray Deposition on Mechanical Properties of Ceramic Coating
Mechanical properties of thermal-sprayed ceramic coatings were investigated. Al 2 O 3 and Y 2 O 3 -stabilized ZrO 2 (YSZ) coatings were deposited on plate substrates. Stainless steel plates and aluminum plates, of different thermal expansion coefficients, were used as substrates. The coatings were prepared at two different thicknesses. During deposition of each sample, the history of substrate temperature was recorded. Four-point bending tests were carried out, while strains at the coating surface and the substrate surface were measured with strain gages. The apparent Young's modulus of the coating was determined using the composite beam theory. In addition, the rupture strain of the coating was measured by three-point bending test. The relationship between the results of these tests and the temperature of each substrate during deposition is discussed.