Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
H. Tanaka
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 366-370, November 5–9, 2017,
Abstract
View Papertitled, EBIC and EBAC Analysis of Site Specific STEM Samples
View
PDF
for content titled, EBIC and EBAC Analysis of Site Specific STEM Samples
In transmission electron microscopy (TEM), one typically considers bright-field or dark-field imaging signals, which utilize the transmitted and scattered electrons, respectively. Analytical signals such as characteristic X-Rays or primary electron beam energy losses from inelastic scattering events give rise to the energy dispersive X-Ray spectroscopy and electron energy loss spectroscopy techniques, respectively. In this paper, the detection of the electron beam absorbed current (EBAC) and electron beam induced current (EBIC) signals is reported using a specially designed scanning TEM holder and associated amplification electronics. By utilizing thin TEM samples where the beam-sample interaction volume is controlled more through the incident electron probe size, the EBAC and EBIC signal resolution is improved to the point where implant regions and Schottky junction depletion zones can be visualized.
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 436-439, November 6–10, 2005,
Abstract
View Papertitled, Development of High Accuracy Automatic Magnification Calibration Function for Scanning Transmission Electron Microscope
View
PDF
for content titled, Development of High Accuracy Automatic Magnification Calibration Function for Scanning Transmission Electron Microscope
In the field of semiconductor development and failure analysis, metrology of layers such as gate oxide layer is one of the important analysis due to determine semiconductor itself characteristics. The number of requirements of metrology is increasing by using both scanning and transmission electron microscopy. High accurate metrology depends on accuracy of magnification of electron microscope. We developed accurate magnification calibration for scanning transmission microscope. This method is carried out by using micro scale specimen and silicon single crystal lattice fringe images. We achieved absolute magnification error of less than 2% for all magnification. This microscope provides high accuracy metrology for semiconductor device. We describe an automatic magnification calibration function for the high magnification range required to accurately measure features from a few to tens of nm in size.
Proceedings Papers
ISTFA1996, ISTFA 1996: Conference Proceedings from the 22nd International Symposium for Testing and Failure Analysis, 207-212, November 18–22, 1996,
Abstract
View Papertitled, Pin-Point Transmission Electron Microscopic Analysis Applied to Off-Leakage Failures of a Bipolar Transistor in 0.5μm BiCMOS Devices
View
PDF
for content titled, Pin-Point Transmission Electron Microscopic Analysis Applied to Off-Leakage Failures of a Bipolar Transistor in 0.5μm BiCMOS Devices
Pin-point (specific area) planar transmission electron microscopy (TEM) analysis has been improved to study process-induced defects in recent very large scale integrated (VLSI) devices. The specimens are prepared by a combination of marking failure sites with focused ion beam (FTB) equipment and planar TEM specimen preparation technique. This method provides not only planar observation of localized failures with an accurate observation with high positioning accuracy but also wide range of observable area which is feasible to carry out some application techniques associated with TEM. In particular, it is found to be a powerful method to identify the nature of crystalline defects which cause the failures. This work presents the detailed procedure and demonstrates its successful applicability via studying a leaky bipolar transistor in 0.5μm BiCMOS devices (one failure of more than 4500 transistors). The results clarify the presence of stacking faults, formed during epitaxial growth, between collector and emitter regions in the specific transistor with resistive collector-emitter leakage current.