Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
H. Salem
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 785-790, June 2–4, 2008,
Abstract
View Paper
PDF
Nanostructured and conventional Alumina–13wt.% Titania powders were thermally sprayed using air plasma spray(APS) process. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania coatings. The microstructure and phase composition of the coatings were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM).The fatigue and mechanical properties of the coatings were investigated. SEM analyses were also carried out on the fracture surfaces of fatigue-tested samples to assess the mechanisms of deformations. The experimental data indicated that the nanostructured coated samples exhibited higher stiffness, hardness, and fatigue strength compared to the conventional coated samples.