Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
H. Na
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 255-260, May 4–7, 2009,
Abstract
View Paper
PDF
This study compares the deposition behavior of kinetic sprayed bronze-diamond composite coatings produced using different mixtures of helium and nitrogen gas. To determine impact properties of the diamond particles, bare and nickel-coated diamonds are deposited on bronze layers and the effects of plastic deformation are examined using SEM and finite-element analysis. The results indicate that the deposition efficiency of diamond is determined by several factors and depends more on the angle and shape of the diamond particles than on the deformation properties of the bronze matrix.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 290-295, May 4–7, 2009,
Abstract
View Paper
PDF
In the present investigation, thermally enhanced kinetic spraying of titanium onto mild steel substrates is carried out in conjunction with powder preheating to obtain a dense coating using low-cost nitrogen as the process gas. Prior to this, a prototype model was developed for process optimization based on numerically approximated adhesion factors. The simulation results show that adiabatic shear instability accelerated by thermal energy and subsequent particle impact leads to the formation of an enhanced thermal boost-up zone that closely correlates with deposition behavior and coating properties. It is thus shown that the deposition efficiency of titanium can be more than 90% and porosity less than 1% when nitrogen gas is used for cold spraying.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 556-561, May 4–7, 2009,
Abstract
View Paper
PDF
This study assesses the potential of kinetic-spray coatings for dealing with the effects of soldering and erosion on aluminum casting dies. In the experiments, molybdenum-boride cermet and cobalt-based alloy powders are cold sprayed onto SKD61 substrates. Coating microstructure is assessed via SEM and XRD analysis and several mechanical properties are measured. In order to evaluate soldering resistance, the coatings are immersed in a molten aluminum bath. Although cold-sprayed CoCrNiWC exhibited high coating density and low porosity, its soldering resistance was significantly lower than that of MoB-NiCr. The boride cermet coating not only exhibited superior soldering resistance, but also higher hardness, bond strength, and wear resistance. However, its deposition efficiency needs further improvement.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 848-852, June 2–4, 2008,
Abstract
View Paper
PDF
Manufacturing of diamond abrasive wheel has been achieved through kinetic spraying in order to simplify the manufacturing process and improve the mechanical properties. However, size of the initial feedstock diamond particles is reduced by fracturing during the process. Uniform distribution of diamond particles in the coating layer is significantly important for obtaining grinding properties of diamond abrasive wheel. In this study, optimized nickel thin film which is coated around the surface of diamond particle was used to prevent the fracture of diamond particles during spraying and improve the properties. Thickness of the nickel thin film was optimized by ABAQUS 6.7-2 finite element analysis software as 3 µm for 20 µm diamond and bronze particles. Fraction and size distribution of the diamond particles present in the coating were analyzed through Scanning Electron Microscope (SEM) and Image analyzer methods.