Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
George Lange
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 144-152, October 30–November 3, 2022,
Abstract
View Paper
PDF
Laser Voltage Probing (LVP) is an essential Failure Analysis (FA) technique that has been widely adopted by the industry. Waveforms that are collected allow for the analyst to understand various internal failure modes related to timing or abnormal circuit behavior. As technology nodes shrink to the point where multiple transistors reside within the diffraction-limited laser spot size, interpretation of the waveforms can become extremely difficult. In this paper we discuss some of the evolving challenges faced by LVP and propose a new technique known as Differential LVP (dLVP) that can be used to debug marginal failing devices that exhibit a pass/fail boundary in their shmoo plot. We demonstrate how separate pass and fail LVP waveforms can be collected simultaneously and compared to immediately identify whether logic is corrupted and when the corruption occurs. The benefits of this new technique are many. They include guarantees of equivalent pass vs. fail data independent of crosstalk, system noise, stage drift, probe placement, temperature effects, or the diffraction-limited resolution of the probe system. Implementing dLVP into existing tools could extend their effective lifetimes and improve their efficacy related to the demands posed by the debug of 5nm technologies and smaller geometries. We anticipate that fully integrated and evolved dLVP will complement workhorse FA applications such as Laser Assisted Device Alteration (LADA) and Soft Defect Localization (SDL) analysis. Wherein those techniques map timing marginalities propagating to, and observed by, a capture flop, dLVP can extend such capabilities by identifying the first instance of corrupted logic inside the flop and map the corruption all the way to the chip output pin.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 73-81, November 9–13, 2014,
Abstract
View Paper
PDF
Laser-assisted device alteration (LADA) is an established technique used to identify critical speed paths in integrated circuit. In this paper, the characterization of continuous wave 1340nm laser induced currents and the LADA failure rate show that a two photon absorption explanation for the LADA effect is not plausible. The following sections confirm the results of a 28nm-node nMOS transistor using a 2.45NA solid immersion lens. The effects of global heating to that of local laser heating are then compared. The paper shows that the LADA response time to approximately 1300nm irradiation is << 100ns. It explains LADA at approximately 1300nm, free carrier absorption in the silicon and in the local silicide layers, and presents selected 1320nm LADA images on 28nm-node devices. Finally, it shows 1064nm LADA images on the same structure that indicate that 1064nm interaction with transistors is related to free carrier absorption, rather than electron-hole pair creation.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 82-86, November 9–13, 2014,
Abstract
View Paper
PDF
Laser-assisted device alteration (LADA) is an established technique used to identify critical speed paths in integrated circuits. LADA can reveal the physical location of a speed path, but not the timing of the speed path. This paper describes the root cause analysis benefits of 1064nm time resolved LADA (TR-LADA) with a picosecond laser. It shows several examples of how picosecond TR-LADA has complemented the existing fault isolation toolset and has allowed for quicker resolution of design and manufacturing issues. The paper explains how TR-LADA increases the LADA localization resolution by eliminating the well interaction, provides the timing of the event detected by LADA, indicates the propagation direction of the critical signals detected by LADA, allows the analyst to infer the logic values of the critical signals, and separates multiple interactions occurring at the same site for better understanding of the critical signals.