Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
G. West
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 679-692, August 31–September 3, 2010,
Abstract
View Paper
PDF
A detailed examination has been carried out of the microstructural evolution and mechanical properties of samples of T91 and T92 steels which have been subjected to both a ‘normal’ preservice heat treatment and an extended stress relief heat treatment at 765°C for up to 16 hours. The samples have subsequently been creep tested to failure at different stresses ranging from 66 to 112 MPa. In each case, a reduction in rupture time was observed of 20-30% in the samples which had experienced the additional stress relief heat treatment compared to those which had not. It is shown that these data, when compared with the mean values expected from European Creep Collaborative Committee (ECCC) Datasheets, result in a reduction in stress of approximately 10% of the mean value predicted from the ECCC data, which is within the allowable scatter band.