Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
G. Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 142-146, June 7–9, 2017,
Abstract
View Paper
PDF
Phase composition and microstructure of hydroxyapatite (HA) significantly affects the biological and mechanical properties of final hydroxyapatite (HA) coating. In the present study, HA coatings were deposited on Ti-6Al-4V by micro-plasma spraying (MPS) using different spray parameters. The influence of spray parameters on the composition and microstructure of the coatings were investigated. To understand the formation mechanism of HA coatings, the in-flight particles and splats were examined as well. The morphologies of coatings surface, cross-sections, initial powder, in-flight particles and splats were characterized by scanning electron microscopy (SEM). Xray diffraction (XRD) was employed to analyze the phase composition. Three typical HA coatings were fabricated. The results indicated that the coating composition and microstructure were tightly related to the melting state of inflight particles. And this was influenced by the spraying parameters. The formation mechanisms of these coatings were discussed.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 730-736, June 7–9, 2017,
Abstract
View Paper
PDF
To manufacture a protective coating with low thermal conductivity and good frictional wear performance, a Fe 59 Cr 12 Nb 5 B 20 Si 4 coating was designed and produced by high velocity oxygen fuel (HVOF) spraying; the properties and performance of this coating where then compared with those of a commercially available AISI 316L stainless steel coating. In the as-deposited state, both coatings exhibit dense layered structures with porosity below 1% and slight oxidation. The microstructure of the Fe-based coating has an amorphous matrix and some precipitated nanocrystals. The result is that the designed Fe-based coating has a thermal conductivity (2.66 W/m·K) that is significantly lower than that of the 316L stainless steel coating (5.87 W/m·K). Based on its advantageous structure, the Fe-based coating exhibits higher microhardness, reaching 1258±92 HV. The friction coefficient and wear rate of the Fe-based coating show an increase at 200°C followed by a decrease at 400°C, due to the evolution of the wear mechanism at different temperatures. The dominant wear mechanism of the Fe-based coating at room temperature is fatigue wear accompanied by oxidative wear. At 200°C, due to the existence of “third body” abrasive wear, the wear process was accelerated. The large-area oxide layer is likely responsible for the decrease of friction of the coating at 400°C.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 725-729, May 10–12, 2016,
Abstract
View Paper
PDF
Previous studies have shown that nanostructured coatings produced by plasma spraying can stimulate cellular activity and promote bone healing. Since then, a number of studies have been conducted to better understand how coating nanotopography can be controlled and how it influences bioactivity and healing. This paper reviews some of the key findings in three areas: the effects of nanotopography on bone cell adhesion, the effects of nanotopography on bone-like apatite formation in simulated body fluid, and how to refine the nanotopography of plasma-sprayed coatings.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005949
EISBN: 978-1-62708-168-9
Abstract
This article discusses the classification of carbon steels based on carbon content, and tabulates the compositional limits of medium- and high-carbon steels based on the AISI code and other similar codes. It describes recrystallization annealing and spheroidizing of carbon steels, and discusses the classification of carbon steels for heat treatment. The article also discusses the estimation of continuous cooling curves from isothermal transformation curves. It provides information on the Jominy end-quench test and the Grossmann method and the procedures to increase hardenabilty of carbon steels. The article includes information on the purpose of tempering and heat treating guidelines for different grades of steels, including cast carbon steels.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 146-156, May 21–23, 2014,
Abstract
View Paper
PDF
In this study, Fe-Cr-Al and Fe-Cr-Al-B cored wires were produced and deposited on steel substrates by wire arc spraying. The microstructure, hardness, and high-temperature corrosion behavior of the cored-wire deposits were evaluated in comparison to Fe-Cr and commercial Fe-Cr-Al solid-wire coatings. All coating samples exhibited lamellar microstructures with oxide inclusions, the fewest being in the Fe-Cr-Al-B deposits. Microhardness was measured along coating cross-sections at various distances from the coating-substrate interface. The Fe-Cr coatings were the hardest, followed by the Fe-Cr-Al-B deposits. Thermogravimetric analysis was used to evaluate high-temperature corrosion behavior in a molten salt environment under cyclic conditions, with the Fe-Cr-Al-B cored-wire deposits performing the best.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 813-818, May 21–23, 2014,
Abstract
View Paper
PDF
This study demonstrates an experimental setup in which acoustic emission sensing is used to monitor a twin wire arc spraying (TWAS) process. Emitted acoustic signals were recorded by broadband sensors attached to the spray nozzle and mounted under the substrate. Sensor outputs were converted from the time domain to the frequency domain by fast Fourier analysis. Acoustic emission amplitude plots were produced and are correlated with gas pressure, arc voltage, in-flight particle velocity and temperature, coating thickness, and crack formation due to cooling.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 409-415, May 21–24, 2012,
Abstract
View Paper
PDF
One of the greatest obstacles for a wide distribution of thermal spraying techniques is the lack of online control over the spraying process. The thermally sprayed coatings are optimized by an empirical modification of the spraying parameters and the subsequent correlation of these parameters to the obtained coatings. Some intrinsic parameters, such as the fluctuations in twin wire arc spraying and wear in the atomization nozzle, are not adjustable. Even though they have an enormous impact on the obtained coating quality, they are often scientifically neglected for reasons of simplification. In this work, acoustic emission analysis is utilized to study the effect of uncontrollable parameters on acoustic signals. In order to enable an easy determination of the changes in the acoustic signals, the acoustic sensors were mounted on the spraying nozzle as well as on the substrate. At increased current, a lower acoustic emission is recorded. A correlation between uncontrollable parameters, the acoustic signals, and the obtained coating quality was observed. This research contributes to the online control of the spraying process.
Proceedings Papers
HT2011, Heat Treating 2011: Proceedings from the 26th Heat Treating Society Conference, 91-98, October 31–November 2, 2011,
Abstract
View Paper
PDF
Heat treaters need an effective simulation tool to predict the carburization performance of a variety of steels. The tool is needed not only to predict the carbon profile but also to optimize the process in terms of the cycle time and the cost. CarbTool has been developed to meet these needs for gas and vacuum carburization. In this paper, CarbTool predictions were compared with industrial experimental results of four types of steels, heat treated by both gas and vacuum carburizing processes. Based on the excellent agreement of model predictions and experimental results, CarbTool may be used to predict the carbon concentration profile for a variety of alloys in both gas and vacuum carburizing processes.