Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
G. Raman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 105-107, May 3–5, 2010,
Abstract
View Paper
PDF
WC-Co thermal sprayed coatings are mainly used for wear protecting functions in various industries, for which high velocity oxy fuel (HVOF) spray is considered to be the best suited process. However, WC-Co HVOF coatings still have some defects as compared with sintered bulk, such as decarburization of WC and porous structure. Recently, experiments of WC-Co coatings using warm spray (WS) and cold spray processes have demonstrated some improvements in reduction of these defects. In particular, WS process seems to be a more promising process for WC-Co coatings from the previous work. In this study, wear resistant functions of WC-12%Co coatings prepared by HVOF and WS were investigated by abrasion and erosion tests. In addition, in-flight particles were captured and their characteristics such as the amount of decarburization, crystal phase, particle strength and particle size distribution were investigated to clarify the difference between HVOF and WS processes. The result shows that the wear resistances of the WC-Co WS coatings are comparable or superior to those of the HVOF coatings, which can be attributed to the difference in the amount of W 2 C and coatings porosity revealed by the in-flight particles and the coating microstructure. The result of the in-flight particle analysis also indicates that wear resistance of WS coatings can be further improved by optimizing the powder shape and chemical composition.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 289-293, May 3–5, 2010,
Abstract
View Paper
PDF
WC-Co cermet coatings were fabricated by using Warm Spraying, which is a modification of HVOF spraying to lower the temperature of the propellant gas below the melting point of Co. By changing the processing parameters, specimens were prepared for hardness, abrasion wear and particle erosion tests. Their microstructures were examined by SEM and XRD. The microstructure clearly showed the effects of suppression of the dissolution of WC into the Co phase, which is the major cause of embrittlement of the conventional HVOF sprayed WC-Co coatings. By combinations of adequate feedstock powder and processing parameters, it was possible to take advantage of fine WC grain size to prepare coatings with higher hardness (HV > 1400), smoother surface (Ra < 2 μm), and moderately improved wear performances compared with conventional HVOF coatings.