Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
G. R. Holcomb
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 312-324, August 31–September 3, 2010,
Abstract
View Paper
PDF
Oxyfuel combustion efforts to burn fossil fuels with oxygen, for easier post-combustion CO 2 capture, include schemes to use flue gas to drive turbines for power generation. The environment examined here is 10% CO 2 and 0.2% O 2 , with the balance being steam, with temperatures ranging from 630 to 821 °C. The relatively high C and O 2 activities of this environment, as compared to pure steam, may lead to changes in oxidation behavior and mechanical properties. Oxidation coupons of Ni- and Co-base superalloys, in both bare metal and TBC coated conditions, were exposed to this environment for up to 1000 hours. The results of these exposures, in terms of mass gain and scale morphology, are presented.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 357-370, October 25–28, 2004,
Abstract
View Paper
PDF
An iron aluminide (Fe 3 Al) intermetallic coating was deposited onto F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was characterized by electron microscopy, X-ray diffraction, oxidation, and adhesion. Fe 3 Al coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment of N 2 -10%CO-5%CO 2 -2%H 2 O-0.12%H 2 S (by volume) at 500, 600, 700, and 800°C for approximately seven days. All specimens gained mass after exposure, inversely proportional to temperature increases. Representative cross-sectioned specimens from each temperature underwent scanning electron microscopy (SEM) and X-ray mapping examination. Results are presented in terms of corrosion weight gain and product formation. The research evaluated the effectiveness of an HVOF-sprayed Fe 3 Al coating in protecting a steel substrate exposed to a fossil energy environment.