Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
G. Nykyforchyn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1029-1034, May 14–16, 2007,
Abstract
View Paper
PDF
Different post treatment methods such as heat treatment, mechanical processing, sealing, etc. are known to be capable to improve microstructure and exploitation properties of thermal spray coatings. In this work a plasma electrolytic oxidation of aluminium coatings obtained by arc spraying on aluminium and carbon steel substrates is carried out. Microstructure and properties of oxidised layers formed on sprayed coating as well as on bulk material are investigated. Oxidation is performed in electrolyte containing KOH and liquid glass under different process parameters. It is shown that thick uniform oxidised layers can be formed on arc sprayed aluminium coatings as well as on solid material. Distribution of alloying elements and phase composition of obtained layers are investigated. A significant improvement of wear resistance of treated layers in two types of abrasive wear conditions is observed.