Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
F.-Y. Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1145-1148, May 14–16, 2007,
Abstract
View Paper
PDF
Iron base composite coatings were deposited on mild steel substrates by arc spraying and cored wire with TiC ceramic powders. The abrasive wear resistance properties were examined on the MLS-225 wet sand/rubber wheel tester. The microstructure, phase compositions and worn surface morphologies of the coatings were observed by means of optical, scanning electron microscopy and X-ray diffraction. The results showed that composite coatings with TiC ceramic hard phases were reinforced by the TiC hard particles distributed in the iron-based coating. The average micro hardness of the coatings is about 1137 HV0.1. The coatings have the excellent abrasive wear resistance which is 6 times higher than that of the Q235 mild steel. Wear mechanisms of coatings was mainly micro-ploughing and brittle fracture.