Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
F. Janke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 169-173, March 17–19, 1999,
Abstract
View Papertitled, Einbindung und Nachweis von Polymeren in thermisch gespritzten Schichten (Implementation and Characterization of Polymers in Thermally Sprayed Coatings)
View
PDF
for content titled, Einbindung und Nachweis von Polymeren in thermisch gespritzten Schichten (Implementation and Characterization of Polymers in Thermally Sprayed Coatings)
The improvement of the tribologic characteristics of surfaces is an important application of thermal sprayed coatings. Also various ranges of application demand good antiadhesive characteristics. The tribologic and antiadhesive characteristics of fluorine containing polymers are very good. Since furthermore those polymers have the highest thermal resistance of all plastics it has been investigated if those polymers can be integrated in thermal sprayed oxide and carbide coatings. The aim was to improve the tribologic and antiadhesive characteristics. The processes Plasma- and HVOF-spraying have been used to apply the coatings. The polymers in the coatings were detected by examinations with the light-optical and the scanning electron microscope. To heighten the contrast for the light microscopy examinations the metallographic sections of the specimens were physically contrasted. To clearly identify the different phases with the scanning electron microscope EDX-analyses have been carried out. Samples have been tested to investigate the mechanical characteristics of the coatings. Paper text in German.