Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
F. Delloro
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 586-595, May 4–6, 2022,
Abstract
View Paper
PDF
The health of railway material is of paramount importance for the safety of rail transportation. Railways are subject to heavy mechanical loading and to harsh environments, causing corrosion and damage that can bring to failure. The cold spray process has a great potential as an efficient and portable refurbishment technology, with the advantage of avoiding thermal effects on the substrate. In this study, a proof of concept for the cold spraying of railway steel onto a similar material is presented. This represents a first step towards the development of a cold spray solution for railway repair. First, the as-atomized steel powder revealed to be hardly sprayable. A heat treatment was then optimized and applied to the powder to induce microstructural evolution and to improve deposition efficiency and material quality. Therefore, the refurbishment of damaged railway samples by cold spray was proven to be viable. Finally, mechanical testing assessed the restoration of the structural properties needed for the application.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 87-95, May 24–28, 2021,
Abstract
View Paper
PDF
Unlike their metal counterparts, composite structures do not readily conduct away the electrical currents generated by lightning strikes. Cost reduction and expected production growth of the next middle range airplanes require automated manufacturing process of polymer components. The development of an automated technology to metallize polymer based composite for lightning strike protection is the aim of the CO3 project (EU Grant agreement: ID831979). In this study, thermal and electrical conductivities of composites were achieved by cold spray deposition of Cu or Al coatings. Critical points to be addressed were substrate erosion during cold spray, lack of polymer-metal adhesion and poor deposition efficiency. Several strategies were tested: i) a thin polymer film was cocured at the substrate surface before cold spraying, to enable implantation of metallic particles in the film, helping coating build-up and protecting the fibers of the composite. ii) Cold spraying a mix of metal and polymer powders to improve coating adhesion and prevent fiber damage. iii) Supercritical Nitrogen Deposition technology, prior to cold spray, to mechanically anchor metallic particles into the polymer. Subsequent cold spraying of purely metallic coatings was more efficient and showed better adhesion. All coatings were tested in terms of adhesion strength and electrical conductivity.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 561-568, May 24–28, 2021,
Abstract
View Paper
PDF
One of the main levers to reduce CO2 emissions in cars and trucks is mass and friction reduction, which is often achieved through the use of special coatings. The aim of the present work was to develop metal-ceramic-lubricant composite coatings with the best combination of wear, seizure, fatigue, and thermal resistance. Metal-based coatings incorporating hard particles and solid lubricants were cold sprayed onto steel substrates and the relationship between coating microstructure and tribology was studied. To meet the demanding tribological requirements of heavily loaded engines, the interfaces between the different components were optimized by selecting appropriate feedstock powders and assessing a wide range of process parameters. Alumina-reinforced bronze composite coatings were made from powders with different morphologies. Aggregated ceramic powders were found to be more beneficial in terms of wear than massive powders, and graphite was found to be effective for reducing seizure.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 627-634, May 24–28, 2021,
Abstract
View Paper
PDF
In cold spray, particles undergo large plastic deformation upon impact in a rapid dynamic regime (up to 109 s-1) at solid state. The simulation of this impact is key to understanding the cold spray process. In this study, an approach based on laser shock and micro-compression testing was developed to characterize the mechanical behavior of powders and fit parameters of the Johnson-Cook material behavior model. In situ micro-compression particle testing was performed in a SEM equipped with a microindentation stage. From subsequent FEM simulations of the test, static coefficients of the Johnson-Cook model were identified. A laser shock powder launcher (LASHPOL) was also developed to accelerate single particles and measure their corresponding velocity using high-speed imaging. In addition, image analysis of the particles before and after impact, together with FEM simulation, were used to determine strain rate hardening coefficients for the Johnson-Cook model.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 719-724, June 7–9, 2017,
Abstract
View Paper
PDF
Cold spray is continuously expanding for the repair of parts made of aluminum-based alloys. Beyond repair applications, the process is now expected to be exploited efficiently for the additive manufacturing of shaped parts. However, up to now, cold spray is limited to the achievement of rather simple shapes due to a lack of basic knowledge on coating build-up mechanisms to result in dimension-controlled deposition. The objective of this work is to fill that gap through an experimental and modeling study of the coating build-up in cold spray for this specific application. Experimentally, Al-based coatings were deposited for a large range of particle velocity due to the use of low-pressure, medium-pressure and high-pressure cold spray facilities. Particle velocity was monitored as a function of cold spray conditions. Two different types of Al 2024 (Aluminium 2024 Alloy) powders were tested. Coating porosity and microhardness were studied as a function of (both morphological and metallurgical) powder characteristics and spray conditions, primarily in the light of particle velocity. Various correlations could be exhibited. Finite element (FE) simulations of particle impacts were developed, including particle velocity from experimental measurements. These will be used as inputs in an in-house morphological model, the first stages of which could be established successfully.
Proceedings Papers
High Deposition Efficiency Additive Manufacturing of Titanium Using Low Pressure Nitrogen Cold Spray
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 12-17, May 10–12, 2016,
Abstract
View Paper
PDF
In this work, fully dense titanium parts are fabricated by cold gas dynamic spraying (CGDS). Titanium powder is deposited using a low-pressure CGDS process with nitrogen as the carrier gas. The density, porosity, hardness, and tensile properties of the parts produced are determined and discussed.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 69-74, May 21–23, 2014,
Abstract
View Paper
PDF
This study deals with the influence of spray angle on the deposition of cold-sprayed Al particles. Spray trails were conducted in parallel with finite element simulations of particle deformation and coating build-up as a function of spray angle, powder size, substrate roughness, and surface configuration. Coating cross-sections and splats were examined by SEM; bonding strength and particle adhesion were determined via laser shock adhesion testing. Experimental as well as modeling results show that splats deposited at spray angles less than 60° are highly deformed and poorly adhered. Based on the findings, several conclusions are drawn with regard to the potential use of cold spraying for the repair of aircraft components.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 221-226, May 21–23, 2014,
Abstract
View Paper
PDF
In this work, a numerical model of the cold spray process was developed to reproduce microstructures obtained in coatings by simulating the deformation of impinging particles and resulting coating build-up. The model employs a library of particle images generated by x-ray microtomography. To each image, a velocity is assigned and the deformation that would be produced by particle impact is estimated by means of finite element analysis and stored for later use. Based on the results, the ing approach has good potential for simulating coating microstructures that can be achieved through cold spraying.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 886-891, May 21–23, 2014,
Abstract
View Paper
PDF
In the present study, X-ray microtomography is used to examine cold-sprayed tantalum splats on copper substrates. To resolve tantalum splats intermeshed with other splats of the same chemical composition, a contrasting medium of some sort is required. For this purpose, the feedstock powder is coated with an iron layer by means of fluidized-bed chemical vapor deposition. Experimental tests were coupled with finite element simulations to determine how stresses generated during the impact of a spherical iron-coated particle affect the integrity of the added contrasting layer.