Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
F. Céré
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Polyamide-11 Powder Coatings by Flame Spraying
Available to Purchase
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 917-922, May 15–18, 2006,
Abstract
View Papertitled, Polyamide-11 Powder Coatings by Flame Spraying
View
PDF
for content titled, Polyamide-11 Powder Coatings by Flame Spraying
Thermoplastic Polyamide-11 powder coatings serve many industries – such as water handling, automotive, and appliances. This utility is based on the ability to simultaneously provide exceptional resistance to: corrosion, impact/abrasion, and numerous chemicals. Typically application is by traditional methods – electrostatic spray or fluidized bed dipping. The present work demonstrates for the first time that the flame spray method can produce Polyamide- 11 powder coatings very close in performance to those produced by traditional methods. The keys are proper substrate pre-heating, and flame conditions that minimize polymer degradation. Coatings performance, impact resistance, and molecular weight data are presented.