Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
F. Ben Ettouil
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 46-53, May 22–25, 2023,
Abstract
View Paper
PDF
Thermal-sprayed coatings have been extensively used in aerospace with the main purpose to overcome critical challenges such as abrasive wear, corrosion, and erosion under high temperatures and pressures. Such protective coatings can also play a crucial role in optimizing the efficiency of gas turbine engines and therefore in reducing fuel consumption and CO 2 emissions. CuAl-based thermal sprayed coatings are commonly employed in tribological interfaces within gas turbine engines to improve the fretting wear resistance. These coatings are typically deposited by more traditional thermal spray techniques such as Air Plasma Spray (APS), which can result in high amounts of oxidation within the coating. The main purpose of this study is to critically evaluate lower temperature deposition techniques such as High Velocity Oxygen Fuel (HVOF). More specifically, commercially available Cu-10Al powders were deposited by APS and HVOF and compared in terms of their microstructural, mechanical properties, and tribological behavior at various temperatures. The results showed that the friction coefficient for both coatings was equivalent at room temperature while it was lower for the APS coating at high temperature. Similarly, the specific wear rates showed little difference between the different deposition processes at room temperature while the APS coating had a lower wear rate at elevated temperature when compared to the HVOF coating. The differences in the friction and wear behavior were attributed to differences in the interfacial processes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 618-624, May 22–25, 2023,
Abstract
View Paper
PDF
The deposition of MCrAlX coatings (where M is Ni, Co, Fe, or a combination of these, and X is Y, Si, Ta, Hf, or a combination of these) via thermal spraying has acquired significant importance in industries such as aerospace, power plants, oil, and gas, etc. Among various thermal spray deposition techniques, high-velocity air fuel (HVAF) has shown a growing potential for the deposition of metallic powders which are sensitive to high-temperature oxidation during spraying. Thus, it is essential to understand the in-flight behavior of these metallic particles in the high-velocity, low-temperature HVAF flame. In this work, a NiCoCrAlY powder was sprayed using two sets of HVAF deposition parameters onto stainless steel substrates. In-flight particle diagnostic tools such as AccuraSpray were employed to understand the behavior of these spray particles. The deposited particles were comprised of partially molten particles and fully deformed splats. Samples with higher powder feed rates showed a primary coating buildup on the substrate surface. EDS plots revealed no traces of inflight particle oxidation but contained carbon residue due to the presence of unburnt hydrocarbons from the fuel-rich HVAF-M3 torch. This study provides a preliminary understanding towards the significance of deposition parameters on the in-flight particle oxidation behavior and splat deformation characteristics by HVAF spraying.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 640-646, May 22–25, 2023,
Abstract
View Paper
PDF
Aircraft gas turbine blades operate in aggressive, generally oxidizing, atmospheres. A solution to mitigate the degradation and improve the performance of such components is the deposition of thermal barrier coatings (TBCs). Specifically for bond coats in aerospace applications, High Velocity Air Fuel (HVAF) is very efficient for coating deposition. However, internal diameter (ID) HVAF has received little attention in the literature and could be a promising alternative to limit oxidation during spraying when compared to conventional methods. The main objective of this study is to analyze how the ID-HVAF process influences the microstructure of NiCoCrAlY coatings. To that end, an i7 ID-HVAF torch is used to deposit NiCoCrAlY splats on a steel substrate with different stand-off distances. The deposited splats showed the presence of craters, and both partially melted and deformed particles at the surface. The particle velocity data was recorded, and the splat deformation and amount of particles deposited was shown to be directly corelated to the stand-off distance. The material composition analyzed and quantified by Energy Dispersive Spectroscopy (EDS) did not reveal any traces of in-flight of particle oxidation, but further investigation is required. This study provided a preliminary understanding towards the importance of stand-off distance on the splat deformation and in-flight oxidation.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 113-119, May 13–15, 2013,
Abstract
View Paper
PDF
This study evaluates the wetting behavior of TiO2 coatings deposited by atmospheric and suspension plasma spraying. A design-of-experiments method is used to investigate the effect of different spray parameters on the water contact angle (WCA) of the coatings. Despite the hydrophilic nature of TiO2, coatings with WCAs as high as 140° were achieved by controlling various spray parameters. SEM imaging shows that these coatings have a cauliflower-like surface morphology that repels and sheds water.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 193-199, May 4–7, 2009,
Abstract
View Paper
PDF
Suspension plasma spraying facilitates the production of thick coatings structured at the submicron or even nanometer scale. Due to the large volume fraction of internal interfaces, nanostructured coatings tend to be superior to their microstructured counterparts. Suspension plasma sprayed oxide ceramics, for example, have higher coefficients of thermal expansion, lower thermal diffusivity and hysteresis, higher hardness and toughness, and better wear resistance. In this work, Y-PSZ thermal barrier coatings are manufactured by means of SPS using two commercial submicron powders with different particle size distributions. By varying spray parameters, several coating architectures and thicknesses were achieved. The coatings were subjected to a series of thermal and isothermal shocks in order to assess the effect of particle size distribution, layer thickness, and substrate roughness on thermomechanical behavior.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 213-218, May 4–7, 2009,
Abstract
View Paper
PDF
Numerous works have shown that decreasing the scale of coating structure leads to an improvement in tribological behavior. Suspension plasma spraying has proven particularly effective at producing coatings with submicron even nanoscale structure, while maintaining the versatility of thermal spraying. This paper examines the dry sliding behavior of several ceramic oxide composite coatings produced by suspension plasma spraying. The structural scale and the effect of composition are studied as well.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 270-275, May 14–16, 2007,
Abstract
View Paper
PDF
When spraying ceramic particles with a low thermal conductivity such as zirconia using Ar-H 2 direct-current (d.c.) plasma jets where the heat transfer is important, heat propagation phenomena take place with the propagation of melting, evaporation or even solidification fronts. Most models neglect these heat propagation phenomena assuming the particle as a lumped media. This work is aimed at developing a model coupling the effect of heat propagation with the particle dynamic within plasma jets. It uses an adaptative grid in which the coordinates of the phase change fronts are fixed. It allows minimizing the calculation costs (approximately 10 seconds on PC under windows XP against 1hour with an enthalpy model). Such calculations are illustrated for dense and porous agglomerated zirconia as well as iron particles which evaporation in an Ar- H 2 (25 vol %) plasma is important.