Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Elham Amini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2024, ISTFA 2024: Conference Proceedings from the 50th International Symposium for Testing and Failure Analysis, 259-265, October 28–November 1, 2024,
Abstract
View Papertitled, Exploring the Effectiveness of Combining Electron-Beam Probing and Optical Techniques in a 16 nm Technology Device
View
PDF
for content titled, Exploring the Effectiveness of Combining Electron-Beam Probing and Optical Techniques in a 16 nm Technology Device
This work demonstrates the capability of E-beam probing, combined with optical techniques, to effectively monitor the activity of the IC structures and extract the signals from a 16nm technology device through the silicon backside. We conducted optical probing to localize the area of interest on the device, where we aimed the E-beam probing to gather the signal. Once the target was located, a trench down to the STI level was opened on the device. This enables the use of E-beam probing, which has a much higher resolution than the optical methods.
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 339-345, November 12–16, 2023,
Abstract
View Papertitled, Electrons Vs. Photons: Assessment of Circuit’s Activity Requirements for E-Beam and Optical Probing Attacks
View
PDF
for content titled, Electrons Vs. Photons: Assessment of Circuit’s Activity Requirements for E-Beam and Optical Probing Attacks
Contactless probing methods through the chip backside have been demonstrated to be powerful attack techniques in the field of electronic security. However, these attacks typically require the adversary to run the circuit under specific conditions, such as enforcing the switching of gates or registers with certain frequencies or repeating measurements over multiple executions to achieve an acceptable signal-to-noise ratio (SNR). Fulfilling such requirements may not always be feasible due to challenges such as low-frequency switching or inaccessibility of the control signals. In this work, we assess these requirements for contactless electron- and photon-based probing attacks by performing extensive experiments. Our findings demonstrate that E-beam probing, in particular, has the potential to outperform optical methods in scenarios involving static or low-frequency circuit activities.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 279-284, November 5–9, 2017,
Abstract
View Papertitled, Backside Protection Structure for Security Sensitive ICs
View
PDF
for content titled, Backside Protection Structure for Security Sensitive ICs
Modern integrated circuits (ICs) are in permanent risk of hardware attacks on sensitive data. But, proper and affordable protection of the IC backside against Focused Ion Beam (FIB) and optical fault injection attacks is missing. In this work, we investigate a patent [1] that uses p-n junctions as light emitters (forward bias) and detectors. We improved the backside detection mechanism presented in the patent by developing a test structure and adding an optically active layer on the backside as protective element to detect an attacked backside with electrical signals in the IC. The angle dependent reflection provided by the layer acts as the protective function. We demonstrate how the light emission and detection concept is quantitatively working and how the active layer produces a backside layer integrity related signal in the IC which can act as attack indicator. We also show that, due to the weak light emission intensity of silicon and the high excitation current, influences such as multi-angle reflection and stray current are reducing the angle-dependent effect on the signal and have to be taken into account in practical use.