Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
E. Le Guen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 664-669, June 2–4, 2008,
Abstract
View Paper
PDF
Tungsten carbide – cobalt powders (WC-17wt.%Co) were plasma sprayed by a water-stabilized system WSP. A matrix of experiments with variable feeding distances and spray distances was carried out. Thinner coatings were carried out on carbon steel substrates and thicker coatings on stainless steel substrates to compare fast cooling conditions – the former with slower cooling conditions. Basic characterization of coatings was done by XRD, SEM and light microscopy plus image analysis. Microhardness was measured on polished cross sections. The main focus of investigation was on resistances against wear in dry as well as wet conditions. The appropriate tests were performed with set-ups based on ASTM G65 and G75, respectively. The influence of spray parameters onto coating wear performance was observed. The results of mechanical tests are discussed in connection with changes of phase composition and with the character of the coating’s microstructure. The results show that for obtaining of the best possible WC-17Co coating with WSP process, from the viewpoint of wear resistance, the desired parameters combination is long feeding distance combined with short spray distance.