Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
E. Friesen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1011-1016, May 14–16, 2007,
Abstract
View Paper
PDF
For deposition of protective coatings different coating techniques are available. Usually, detailed evaluation of various deposit types and materials is necessary for selection of the best suited coating for specific application fields and demands. Subject of this work are thermally sprayed functional coatings applied as wear (and corrosion) protective layers. Examination of different optimized thermal spray coatings, i.e. HVOF sprayed WC/Co(Cr) and Cr 3 C 2 /NiCr coatings, conventional flame sprayed and fused self fluxing alloy coatings reinforced by hardmetal and APS sprayed oxide Al 2 O 3 /TiO 2 and Cr 2 O 3 coatings, is done in comparison to thick hard chromium platings. Two abrasive wear tests featuring wear by lose abrasive particles are carried out. These impart dry wear conditions according to ASTM G65 (Rubber Wheel test) and wear by abrasive suspensions according to ASTM G75 (Miller test). The work also contains evaluation of newly developed HVOF torch components permitting increased combustion gas, and therefore also particle, velocities concerning the benefit in terms of coating properties. Exemplary evaluation of the new components influence on velocity and temperature of spray particles is carried out by comparative SprayWatch analyses. Both the influence on the coatings microstructure and the wear performance are studied. Coating microstructure is evaluated qualitatively by optical and scanning electron microscopy and the micro hardness HV0.3 is measured. Worn surfaces are studied by SEM in order to deduce wear mechanisms.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 868-874, May 2–4, 2005,
Abstract
View Paper
PDF
Detailed studies concerning influence of microstructural features on the resistance of different thermal spray coatings against dry abrasive wear (Taber Abraser test) and oscillating wear (ball on disk configuration) are carried out. Besides WC and Cr 3 C 2 based cermet coatings produced by a triple cathode APS system with axial powder feed and by HVOF systems using kerosene fuel also APS Cr 2 O 3 and Al 2 O 3 coatings are tested. At the example of WC/CoCr coatings the influence of carbide size and content, powder size fraction, powder manufacturing process and spraying process parameters is studied. For APS Al 2 O 3 investigations concerning the influence of powder feed rate and nozzle geometry of single cathode APS torch are imparted. Oscillating wear tests are performed using alumina and hardened steel balls as counter bodies. Coatings are characterized concerning phase composition and residual stress state by means of XRD. Additionally microstructure is evaluated by SEM investigations and micro hardness is measured. Guidelines for manufacturing of thermal spray coatings fitting the specific demands of the two applied wear conditions are deduced.