Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
E. Dongmo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 454-459, May 21–24, 2012,
Abstract
View Paper
PDF
High-velocity suspension flame spraying (HVSFS) is used for direct processing of submicron and nano-scaled particles to achieve dense surface layers in supersonic mode with a refined structure, from which superior properties are expected. The application of solutions as a carrier fluid for nano-particles in thermal spray systems is a new approach that requires some thermo-physical and chemical optimization. Three dimensional modeling and analysis of the combustion and gas dynamic phenomena of the three-phase HVSFS process is performed in this study for an industrial TopGun-G torch, based on a numerical model for a conventional HVOF process. Parameter analysis of the solution mixture (proportion between aqueous and organic solvent) in a suspension is performed as well as analysis of the variation of the combustion chamber depending on the torch design, leading to more homogeneous flow properties for an improved HVSFS torch.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 442-449, May 4–7, 2009,
Abstract
View Paper
PDF
The aim of this work is to develop an analytical methodology for the analysis and prediction of high-velocity suspension flame spraying (HVSFS) under various operating conditions, to determine the effect of individual parameters on the process, and to aid and promote the design of HVSFS torches. A key aspect of the work is the development of a model that accounts for fuel gas combustion, evaporation of organic solvents, and heat, momentum, and mass transfer between the flame and suspension droplets.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 894-899, June 2–4, 2008,
Abstract
View Paper
PDF
For the manufacturing of metal matrix composites, a combined process of thermal spraying followed by forging in the semi-solid state can be applied. In previous work, it has been shown that thermal spraying leads to a globular microstructure that is suitable for semi-solid forming. Thereby, penetration of the spray material into the reinforcement phase leads to reduced matrix flow paths and thus reduced forming time and fiber disarrangement during the forming process. The main requirement is a low substrate and coating temperature during matrix deposition. By control of the process temperature, geometrical accuracy of the prepreg material and it’s handling between each process step can be significantly improved, leading to an economical method that is a superior alternative to the well established MMC processes like diffusion bonding or squeeze casting. Moreover, due to low process temperatures and process time during matrix application, chemical attack of carbon fiber reinforcements can be reduced. Process development for the manufacturing of continuous fiber reinforced prepregs was focused on the analysis and control of particle properties and substrate temperature. In order to improve the temperature control during arc wire spraying, numerical process analysis of the cooling system was applied. Particle in-flight analysis with the SprayWatch system was used to obtain direct spray parameters as input data for the numerical models. The simulation results were verified by experimental infrared thermography of the substrate during coating. By the use of an optimized cooling system, dense coatings without cracks were achieved with different coating thickness, thereby tailoring the fiber volume content of the final MMC component.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1345-1351, June 2–4, 2008,
Abstract
View Paper
PDF
Nano structured coatings applied by supersonic flame spray processes show a better bonding mechanism, superior hardness and better wear resistance compared to coatings with micron scale structure. However, handling and particle feeding of smaller scale (< 20µm) spray powders is difficult due to their large surface area and easy agglomeration, but also health risks. Therefore, nano structured oxide ceramic powders are mixed with organic solvents in order to form liquid suspensions that are suitable to improve the particle feeding properties. Recent attempts to understand the momentum and heat transfer mechanisms between flame and particles in HVOF flame spraying led to measurement of the in-flight particle properties and computational modeling of the processes. In this work, modeling and simulation of the HVOF spraying process as a two phase model is applied in order to analyze thermal and mass flow processes for an optimization of the spray particle properties and the final properties of the coatings themselves. Simulation results are given for particle tracking during the spray process. Thereby, particle properties are sensitive to a large number of process parameters as well as the particle diameter. Numerical results are validated by experimental diagnosis of particle properties with the SprayWatch system and by the analysis of experimental coatings.