Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
E. Bouyer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 559-566, May 5–8, 2003,
Abstract
View Papertitled, Improved Heat Transfer by RF Plasma Produced Structured Surfaces
View
PDF
for content titled, Improved Heat Transfer by RF Plasma Produced Structured Surfaces
Structured surfaces are needed for improving the heat transfer in a lot of industrial processes. The paper deals with the production and the characterization of coatings with rough and porous surface. Structured coatings of inconel or copper are deposited on copper tubes by means of radio-frequency vacuum plasma spraying. The microstructure as well as the surface roughness of the coatings are investigated. Boiling experiments are carried out on the coated tubes to measure their heat transfer coefficient. The results show that the coated tubes exhibit improved heat transfer values in comparison to smooth tubes. The enhancement ratio can reach more than 20 for inconel coatings.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1221-1227, May 5–8, 2003,
Abstract
View Papertitled, Diagnostics at Thermal Coating Processes – Research Results of the DFG-Founded Project
View
PDF
for content titled, Diagnostics at Thermal Coating Processes – Research Results of the DFG-Founded Project
The aim of the project group consisting of four research centers and founded by the DFG (German Research Society) is to characterize the plasma spraying process by means of diagnostic methods so that, based on the requirement profile of the coating, appropriate adjusting of the process parameters can be realized. For this purpose, different, partly newly-developed diagnostic tools, like Particle Shape Imaging, Laser Doppler Anemometry, Streak Technique, Particle Image Velocimetry, Enthalpy Probe, DPV 2000 and Thermography were qualified and adjusted to each other. The new results presented in this article are limited to the areas of particle injection and substrate which are difficult to handle with diagnostic methods.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1269-1278, May 5–8, 2003,
Abstract
View Papertitled, DC Plasma Diagnostics for Improvement of Plasma Spraying Process under Soft Vacuum Conditions
View
PDF
for content titled, DC Plasma Diagnostics for Improvement of Plasma Spraying Process under Soft Vacuum Conditions
The vacuum plasma spraying process has to be optimized for each task in order to obtain the required mechanical and electrical properties for the desired coatings. This paper deals with the characterization of plasma and powder spray jets at deposition conditions for Solid Oxide Fuel Cells layers. First, DC plasma jets under soft vacuum conditions are characterized by using an enthalpy probe system and a Schlieren optic installation. The influence of the inner contour of the plasma spray torch anode on the temperature and velocity profiles as well on the shape of the plasma jets are investigated. Second, Laser Doppler Anemometry (LDA) measurements were performed for (8 mol %) yttria stabilized zirconia (YSZ) powder (-20+5 µm) spray jets for two chamber pressures, different argon carrier gas flow rates and injection modes. The results show that a M3 Laval nozzle and a F4V nozzle with conical inner profile allow to obtain a larger plasma volume and a more uniform plasma than with a standard F4 anode nozzle resulting in a better treatment of solid particles in the plasma. LDA measurements, using a M3 anode nozzle, show that the penetration and the acceleration of particles in the core of the plasma jet have their optimum at 10 kPa with an inclined injection with respect to the plasma jet axis for a 3.75 slpm carrier gas flow rate.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 186-192, March 4–6, 2002,
Abstract
View Papertitled, Synthesis of Ceramic Layers for Solid Oxide Fuel Cells by Means of TPCVD
View
PDF
for content titled, Synthesis of Ceramic Layers for Solid Oxide Fuel Cells by Means of TPCVD
This paper investigates the potential of radio frequency thermal plasma chemical vapor deposition for producing Sr-doped La-Mn-perovskite and yttria-doped zirconia layers for solid-oxide fuel cells. Aqueous solutions were used as starting materials and were injected into the hot plasma core by means of an air-assist atomizer. Test results show how the microstructure, dopant distribution, and phase purity of the resulting layers depends both on process conditions and the material system. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 471-478, May 28–30, 2001,
Abstract
View Papertitled, Influence of Anode Nozzle and External Torch Contour on the Quality of the Atmospheric DC Plasma Spray Process
View
PDF
for content titled, Influence of Anode Nozzle and External Torch Contour on the Quality of the Atmospheric DC Plasma Spray Process
By means of Schlieren photography, enthalpy probe, mass spectrometry and the particle measuring system DPV 2000 the influence of the internal and external anode nozzle and torch geometry, on plasma jet quality for atmospheric plasma spraying was investigated. It turned out that there is a strong geometrical effect of the inner contour and that with a proper expansion of the hot core of the plasma jet a considerable improvement of the melting and deposition quality can be obtained. Also the outer torch contour is of influence on the spray process because it controls the formation and the intensity of turbulence and the interaction of the plasma jet with its surrounding and hence the cold gas entrainment.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 919-928, May 8–11, 2000,
Abstract
View Papertitled, SiC Coating Synthesis by RF Induction Plasma Spraying from Liquid Silane Precursor
View
PDF
for content titled, SiC Coating Synthesis by RF Induction Plasma Spraying from Liquid Silane Precursor
In this paper a process based on both Thermal Plasma Chemical Vapor Deposition (TPCVD) and Suspension Plasma Spraying (SPS) is applied on r.f. induction thermal plasma for α/β-SiC ceramic synthesis and deposition. The starting materials are low-cost liquid disilanes. The resulting coatings are investigated by means of SEM and XRD. Results on the influence of the processing parameters (i.e. pressure, spray distance, substrate temperature, plasma gas nature and composition, precursor composition, atomization parameters) on the coating phase and microstructure are shown. Control of the microstructure (or nanostructure) as well as of the phase content, namely the ratio α/β can be achieved. A processing route presenting the elementary steps of SiC TPCVD is also proposed.
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 853-858, March 17–19, 1999,
Abstract
View Papertitled, Conversion of Silanes Into SiC by RF Plasma Technology
View
PDF
for content titled, Conversion of Silanes Into SiC by RF Plasma Technology
This paper reports on the synthesis of SiC material through the decomposition of silanes in a thermal high frequency (HF) plasma. The process is based on thermal plasma technology for chemical deposition from the gas phase and on suspension plasma spray technology, in which a liquid or suspension is injected axially and atomized in the plasma flame. The liquid silane then decomposes, and forms SiC with some gaseous by-products such as HCl. Various plasma parameters were varied, for example the plasma power level, the plasma gas composition, the chamber pressure, and the silane composition. The paper also presents first investigations into the elementary and phase composition as well as the morphology of the powders and coatings. Paper includes a German-language abstract.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 353-359, September 15–18, 1997,
Abstract
View Papertitled, Powder Processing by Suspension Plasma Spraying
View
PDF
for content titled, Powder Processing by Suspension Plasma Spraying
Suspension Plasma Spraying (SPS) is a thermal spray process based on a suspension of fine (<10 μm) or even ultrafine (<100 nm) powders which is axially fed into the induction plasma through an atomization probe. The atomization of the suspension results in microdroplets (20 μm in size). They are flash dried in the plasma, melted and finally can impact a substrate to build a coating or be cooled down and collected as a spheroidized powder. The large industrial potential of this technology results first from the use of fine powder or even sol-gel which is one of the starting step for many ceramic processes, and second from the various side benefits of the liquid phase in the SPS. Indeed, the liquid phase can be simply a carrier for ultrafine powder, or a protection against oxidation in the case of metals, or a protection for health in the case of whiskers, for instance. It can also take a part in chemical reactions when the liquid phase is a solution of chloride, nitrates... or it can be an organic liquid for the synthesis of carbide, where CO is a strong reducer. Furthermore the liquid phase can also release some energy because of its combustion at the very end of the process. It can also change the local atmosphere surrounding the in flight droplets in the plasma where it is possible to use H 2 O 2 as a carrier in order to increase the oxygen partial pressure around sensitive to oxygen decomposition materials. The applications of SPS are in the powder synthesis (in R&D or production), in the spraying of metals, ceramics or composites directly synthesized, or in production of very reactive with air materials. Applications of SPS will be presented for hydroxyapatite (HA) and NiAlMo. Induction plasma SPS coatings and/or powders properties will be discussed as a function of the SPS process variables.