Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Don Kent
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 1-6, November 12–16, 2023,
Abstract
View Papertitled, Dimensionality Reduction and Clustering by Yield Signatures to Identify Candidates for Failure Analysis
View
PDF
for content titled, Dimensionality Reduction and Clustering by Yield Signatures to Identify Candidates for Failure Analysis
The job of yield and failure analysis (YA and FA) engineers is to identify the root cause of low-yielding wafers. While physical FA is the most definitive method for determining root cause, resource limitations require YA engineers to search for root cause by identifying other wafers with similar yield signatures. The immense number of yield parameters, or features, collected in modern semiconductor processes makes this a difficult task. This paper presents a workflow employing multiple AI techniques to separate groups of wafers by their distinct yield signatures and determine the parameters most important to defining each group. This aids in the disposition of new low-yield wafers, maximizes the learning from previously collected FA wafers, and allows FA resources to be allocated more effectively, prioritizing them for the highest-impact, unknown fail modes.