Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Don Chernoff
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 370-379, November 6–10, 2005,
Abstract
View Papertitled, X-Ray Nanoanalysis in the SEM
View
PDF
for content titled, X-Ray Nanoanalysis in the SEM
Scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDS) is generally thought of as a bulk analysis technique that is not suited for nano-scale analysis. This paper discusses several options for reducing or eliminating the interaction volume size and obtaining x-ray data with much higher spatial resolution and surface sensitivity than is typically achieved in the SEM. These include collecting data at very low accelerating voltages to minimize beam spread in the sample, tilting the sample to keep the interaction volume near the surface, and analyzing thin sections to reduce or eliminate the problem of beam spread in the sample. Computer software simulations, in conjunction with experimental data are used to illustrate these methods. The paper also discusses issues effecting EDS analysis in the environmental SEM. It has been shown that computer modeling is a useful tool for determining the optimum beam conditions to improve energy dispersive analysis in the SEM.