Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Dominique Carisetti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 253-257, November 1–5, 2015,
Abstract
View Paper
PDF
This paper shows a specific approach based on infrared (IR) thermography to face the challenging aspects of thermal measurement, mapping, and failure analysis on AlGaN/GaN high electron-mobility transistors (HEMTs) and MMICs. In the first part of this paper, IR thermography is used for the temperature measurement. Results are compared with 3D thermal simulations (ANSYS) to validate the thermal model of an 8x125pm AIGaN/GaN HEMT on SiC substrate. Measurements at different baseplate temperature are also performed to highlight the non-linearity of the thermal properties of materials. Then, correlations between the junction temperature and the life time are also discussed. In the second part, IR thermography is used for hot spot detection. The interest of the system for defect localization on AIGaN/GaN HEMT technology is presented through two case studies: a high temperature operating life test and a temperature humidity bias test.
Proceedings Papers
ISTFA2013, ISTFA 2013: Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, 386-391, November 3–7, 2013,
Abstract
View Paper
PDF
To improve the long-term stability of AlGaN/GaN HEMTs, the reduction of gate and drain leakage currents and electrical anomalies at pinch-off is required. As electron transport in these devices is both coupled with traps or surface states interactions and with polarization effects, the identification and localization of the preeminent leakage path is still challenging. This paper demonstrates that thermal laser stimulation (TLS) analysis (OBIRCh, TIVA, XIVA) performed on the die surface are efficient to localize leakage paths in GaN based HEMTs. The first part details specific parameters, such as laser scan speed, scan direction, wavelength, and laser power applied for leakage gate current paths identification. It compares results obtained with Visible_NIR electroluminescence analysis with the ones obtained by the TLS techniques on GaN HEMT structures. The second part describes some failure analysis case studies of AlGaN/GaN HEMT with field plate structure which were successful, thanks to the OBIRCh technique.
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 230-233, November 13–17, 2011,
Abstract
View Paper
PDF
This paper focuses on infrared (IR) thermography capabilities on III-V components for thermal measurements applications and failure analysis (FA). The first part discusses the thermal mapping on InGaAs/AlGaAs PHEMT structure and compares IR thermal measurement with the well-known techniques as Raman and SThM. The second part discusses IR thermography on challenging FA for hot spot detection on the most popular type of capacitor for III-V MMICs as the metal-insulator-metal capacitor. It shows how IR thermography can easily localize very small pinholes in SiN, where liquid crystal and OBIRCH techniques are not well adapted.
Proceedings Papers
ISTFA2002, ISTFA 2002: Conference Proceedings from the 28th International Symposium for Testing and Failure Analysis, 543-551, November 3–7, 2002,
Abstract
View Paper
PDF
The application of laser beam based techniques for ESD defect localization in silicon and gallium arsenide integrated circuits is studied. The Thermal Laser Stimulation technique (OBIRCH, TIVA) is shown to precisely localize electrostatic discharge (ESD) defects under low voltage and current consumption, thus avoiding device or defect degradation upon testing. It is also shown that nonbiased Thermal Laser Stimulation (SEI) tests can localize ESD defects in the silicon substrate. Physical analysis revealed that a thermocouple composed of molten silicon with crystalline silicon generated a Seebeck voltage sufficiently large to be detected. Finally, the pulsed Optical Beam Induced Current technique (OBIC) under no bias condition was evaluated and compared to both biased and nonbiased Thermal Laser Stimulation techniques. It proved to be complementary as it offers a different insight into the ESD induced degradation.