Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Date
Availability
1-1 of 1
Dominic Peachey
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 861-872, October 15–18, 2024,
Abstract
View Paper
PDF
The advancement of additive manufacturing (AM) technology has heightened interest in producing components from nickel-based superalloys for high-temperature applications; however, developing high gamma prime (γ’) strengthened alloys suitable for AM at temperatures of 1000°C or higher poses significant challenges due to their “non-weldable” nature. Traditional compositions intended for casting or wrought processes are often unsuitable for AM due to their rapid heating and cooling cycles, leading to performance compromises. This study introduces ABD-1000AM, a novel high gamma prime Ni-based superalloy designed using the Alloys-by-Design computational approach to excel in AM applications at elevated temperatures. Tailored for AM, particularly powder bed fusion, ABD-1000AM demonstrates exceptional processing capability and high-temperature mechanical and environmental performance at 1000°C. The study discusses the alloy design approach, highlighting the optimization of key performance parameters, composition, and process-microstructure-performance relationships to achieve ABD-1000AM’s unique combination of processability and creep resistance. Insights from ABD-1000AM’s development inform future directions for superalloy development in complex AM components.