Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Dolles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1413-1418, May 15–18, 2006,
Abstract
View Paper
PDF
Innovative short arc technology is gaining high interest for low temperature joining strategies exemplified by the soldering of zinc coated steels and the joining of steel/aluminum hybrid joints. Controlled short arc allows on one hand a very low heat input in the component, so that melting of the base material can be limited. On the other hand it is possible to use low temperature melting filler wires, as for example zinc wire. New development in controlling short arc have been performed in the last year and reached its maturity for welding production (e.g. Cold Metal Transfer (CMT) of Fronius or Cold Arc in EWM). In both cases the short arc is controlled after drop transfer. One way to perform control is a high dynamic wire feed, which allows high dynamic retracting wire end. Another possibility represents a new type of highly dynamic inverter switching, combined with very fast digital current control, to reduce drastically the peak power in the arc when the short arc is reignited. The consequence of this is a no-sputter, low heat processing procedure. The arc is considerably colder due to the power reduction on re-ignition, which means that a lower heat input is possible.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1264-1269, May 2–4, 2005,
Abstract
View Paper
PDF
In the last years laser beam cladding was recognised as a high quality coating process. Low thermal influence, high cooling rates, metallic bonding, minimal surface roughness are only some of the positive aspects. On the other hand the process efficiency is very low and the running costs in comparison to PTA or Thermal Spraying are high. Attempts to improve the productivity aim to enhance the efficiency of the beam source itself or to optimize the energy management. This is for example possible through a higher coating speed or through hybrid setups, which allow the use of an additional preheat source (e. g. plasma-assisted laser cladding). Regarding flexibility, defined as the capability of a process to answer in a short time to application requests, the effectiveness of laser cladding can be widely increased through free forming (shaping) of coatings without additional clamping devices. The geometric shape of the coating seam is mainly defined by gravity and surface tension of the melt. An additional force, as for example Lorentz force, can optimize the geometry and improve the process conditions. Wide seams allow for example a low number of overlapping layers when coating large areas and rise the specific area deposition rate. Slim coatings on the contrary are advantageous when generating 3-dimensional structures. The induced force depends from the applied magnetic field and the flow of an electric current. The presented investigations clarify the physical background, the interaction of the magnetic force and the geometric shape of the coating and the possibility to apply them for technical coatings. The application of an external force made it possible to increase the efficiency of the laser cladding process and to gain more interest of the industry.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1279-1284, May 2–4, 2005,
Abstract
View Paper
PDF
Laser cladding offers several advantages as low dilution, low thermal influence and distortion of the components and a fine microstructure due to the high cooling rate. Nevertheless the set of laser cladding in the industrial production is nowadays limited to few applications, as the efficiency of laser sources is still too low and the running costs are too high. The absorption behaviour of metal surfaces, as for example steel, towards diode laser (up to approx. 42%) is very high compared to Nd:YAG (approx. 35%) and CO 2 -Laser sources (approx. 11%), so that some benefits can be expected. One of the disadvantages of diode laser was the low intensity and the difficulty to couple it in a fibre. The development of the last years reached to overcome these boundaries. High power diode lasers are nowadays available till 6 kW and can be coupled in fibres, allowing an easier processing. Investigations regarding laser alloying with high power diode laser confirm the appreciable reliability of this laser class. In order to improve efficiency of laser surface processing the hybrid process plasma-augmented-laser-cladding (PALC) with an Nd:YAG laser source was presented and confirmed that due to the pre-heating of the powder through the plasma transferred arc and the activation of the metallic surface a higher processing velocity (factor three) and efficiency could be reached by summing only one third of the energy with a PTA-equipment. Further more when processing with higher velocity the energy loss due to conductivity decreases so that a further positive increase of efficiency can be depicted. The suitability of fibre coupled high power diode laser for PALC hasn’t yet been investigated, even if the set of this laser type would be very advantageous. In this paper investigations regarding the process design and the necessary set up of the hybrid PALC-process with a 3 kW fibre coupled high power diode laser and wire coating metal are reported.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 588-594, May 10–12, 2004,
Abstract
View Paper
PDF
Laser cladding is a very promising technology from a metallurgical point of view. The benefits are low heat input into the substrate, high cooling rates resulting in a fine microstructure of the coating and an excellent metallurgical bonding to the substrate. The main disadvantage of laser cladding, however, is poor process efficiency, which causes high processing costs. In order to gain interest on the industrial level an optimisation of the energy management, for example reducing the energy loss through conduction, is necessary. Improved process efficiency and reduced processing time can be realized by a hybrid technology of coupling laser with a plasma arc. The feed can be coaxial to the plasma gun in form of powder. The main advantage of this process is that the processing area as well as the powder is preheated and activated by a transferred arc. The laser power is mainly used for heating up the feedstock material till melting temperature. The experimental results prove the theoretical considerations. Compared to laser cladding an increase in cladding speed and a lower energy input are reached. Further the efficiency towards material can be nearly doubled, reducing stock costs. At last the heat-affected zone is reduced, which offers the possibility to process crack sensitivity materials.