Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Dionaldo Zudhistira
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 305-308, November 12–16, 2023,
Abstract
View Papertitled, In-Situ Orthogonal TEM Lamella Conversion for Catching Subtle Defects in 3D Transistors of Microprocessor Devices
View
PDF
for content titled, In-Situ Orthogonal TEM Lamella Conversion for Catching Subtle Defects in 3D Transistors of Microprocessor Devices
Miniaturization of today’s semiconductor devices and increased complexity of transistor architecture have resulted in gradually shrinking defect sizes. A direct consequence to this is the diminished chance of catching defects in the Transmission Electron Microscope (TEM) on the initial lamella, prompting the need to convert the TEM lamellas to analyze them from a different angle. In this work, a reliable step-by-step procedure to perform in-situ TEM lamella conversion is detailed. The applicability of the method is successfully validated on defective sub-20nm FinFET samples. Two different initial lamella types –planar and cross-sectional – are featured in the case studies to demonstrate the method’s versatility.