Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Derek Denlinger
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 30-36, September 14–16, 2021,
Abstract
View Paper
PDF
Laser Powder Bed Fusion (L-PBF) processes are becoming more viable in place of traditional castings in a variety of industries. To compete, novel material grades are being considered with additive manufacturing (AM). In maximizing performance and manufacturing efficiency through AM, a novel approach to heat treatment and Hot Isostatic Pressing (HIP) processing needs to be considered. It has been shown that combining key heat treatment processes with (HIP) by utilizing fast cooling rates can benefit static properties as well as improve turn-around time for HIP processing [1,2]. Argon pressures up to 207 MPa with cooling rates above 170°C per minute are now available in production sized HIP systems to design ideal HIP cycles for high pressure heat treatment. Additive manufacturing with high pressure heat treatment is in need of further investigation for establishing new qualification standards. This study investigates designed High-Pressure Heat Treatment cycles to consider mechanical performance on LPBF CoCr. The combined cycles investigate possible alternatives to historically accepted two step HIP then heat treat processing by combining densification with homogenization treatment into one step. Tensile, fatigue, hardness, microstructure and Charpy impact performance are explored to seek optimal properties and with streamlined thermal processing. It was found that all trial conditions exceeded Electron Beam Melted (EBM) AM CoCr expectation, but traditional processing provided a slight advantage in ultimate tensile stress. One of the novel processes explored, “common” was found to provide a slight improvement on yield stress and direct hardness. Published fatigue data is rare for CoCr, however data generated from this study showed a slight advantage to the “common” HPHT process primarily for lower applied stress levels. Microstructures were comparable across all trial processes. It is recommended that each novel processing route be considered as viable alternatives to traditional processing, but that the “common” processing may prove advantageous for both mechanical properties and streamlined manufacturing.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 44-50, September 14–16, 2021,
Abstract
View Paper
PDF
Hastelloy X is used in turbomachinery and petrochemical applications as it is designed for excellent oxidation and stress corrosion cracking resistance, strength, and stress rupture behavior. This alloy is now being printed via powder bed fusion processes as many industries have developed interests in the benefits additive manufacturing (AM) offers. However as-printed Hastelloy X suffers from material defect formation such as hot cracking. Hot isostatic pressing (HIP) is often applied to improve performance and reliability. Although the conventional HIP process has been shown to eliminate defects, the equipment is unable to cool at desired rates allowing the formation of excessive carbide precipitation, negatively influencing corrosion resistance and toughness. In turn the product is solution treated at a similar temperature while applying rapid gas cooling for performance requirements. With use of uniform rapid cooling available in modern HIP equipment, a high-pressure heat treatment can be applied offering the ability to perform both HIP and heat treatment in one piece of equipment. Microstructure and tensile properties are evaluated and compared to the conventional processing routes. The results demonstrate that the novel high pressure heat treatment approach offers a processing route that is equivalent to or better than conventional methods.