Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Deniz Duran
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Role of Thermal Processing in Tailored Forming Technology for Manufacturing Multimaterial Components
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 172-179, October 24–26, 2017,
Abstract
View Paper
PDF
The demand for lightweight, high performance components continues to grow in the transportation industry. However, the inevitable trade-off between strength, weight and cost is a limiting factor in design and implementation of many technologies. Load adapted tailored components with locally varying properties offer a potential solution to this problem. In sheet forming industry, use of tailored blanks has increased notably in the last two decades, whereas utilization of such concept is relatively new to bulk metal forming industry. The researchers have been exploring new possibilities for suitable process chains to manufacture massive hybrid components. The process chain involves manufacturing processes of joining, forming, heat treatment and machining. The interface characteristics between the two materials are decisive in the performance of the manufactured component. In this study, manufacturing of a bi-material shaft by tailored forming is covered. First of all, an overview of the tailored forming technology is given with an emphasis on the joining zone treatment by thermal and thermomechanical processing. In the following, a numerical and experimental analysis of induction heating of bi-material workpieces is presented.