Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
David Lam
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 90-94, November 6–10, 2005,
Abstract
View Papertitled, Scanning Optical Microscopy Application in Micron® Memory Devices
View
PDF
for content titled, Scanning Optical Microscopy Application in Micron® Memory Devices
The migration to smaller geometries has translated to an increase in the number of transistors possible in each integrated circuit. Failure analysis of such complex circuits presents a major challenge to the semiconductor industry and is a driving force behind the considerable interest in nondestructive, cost-efficient, “shortcut” fault isolation techniques. In this paper, we present the application of thermal-induced voltage alteration (TIVA) for failure analysis of 0.11µm technology memory devices and demonstrate the key aspects of this technique. The back side TIVA results are compared with analysis performed using back side emission microscopy (EMMI), and the limitations of EMMI are highlighted. The advantages and limitations of the TIVA technique are also discussed.