Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Dan C. Ward
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 51-56, September 14–16, 2021,
Abstract
View Paper
PDF
Across all industries, material specifications are tightening beyond previously understood process capabilities. Slight shifts in material grade, microstructure, heat treatment, or alloy composition can significantly impact long term material integrity. This study examines the feasibility of noncontact, 100% inline magneto-inductive testing on materials and components to ensure material quality standards. To investigate the hypothesis that material grade, carbon content, density, and alloy composition can be accurately tested in real time during production, an experiment was conducted using magneto-inductive test instrumentation and an encircling coil. The results of the investigation confirmed that 100% of the material in a component could be thus tested, accurately, efficiently, and autonomously verifying that the specified material grade with the proper composition and properties had been used.