Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
D.J. Cook
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1015-1020, May 15–18, 2006,
Abstract
View Paper
PDF
The effect of torch hardware, operating parameters, and powder type on substrate surface heat flux was quantitatively investigated using calorimeters. The Sulzer-Metco 6P oxyacetylene torch with two nozzles and two air caps and the Alamo PG-550 torch were studied using designed experiments to show the effects of total combustible gas flow, oxy-fuel ratio, air flow, and standoff distance on surface heat flux. Air caps which directed cooling air toward the flame produced lower heat flux than air caps providing gun cooling. For the 6P torch, nozzle geometry did not have a significant effect on heat flux. With low air flow rates, both torches exhibited similar heat fluxes. At high air flows, the surface heat flux of the PG-550 was larger than that of the 6P.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 251-253, May 2–4, 2005,
Abstract
View Paper
PDF
Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. We have investigated the mechanical properties of cold sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately one centimeter thick were prepared using three different feedstock powders: Valimet H-10, Valimet H-20, and Broadman Flomaster. ASTM E8 tensile specimens were machined from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed and after a 300°C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, < 1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, up to 10% elongation. The annealed samples exhibited mechanical properties similar to wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed material. These results indicate good potential for cold spray as a bulk forming process.