Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
D.E. Mack
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 16-21, May 13–15, 2013,
Abstract
View Paper
PDF
This study compares the deposition and oxidation behavior of two oxide-dispersed CoNiCrAlY powders, one commercially obtained, the other prepared in a high-energy attrition ball mill using CoNiCrAlY and nanosize α-alumina powders. The custom powder was deposited by HVOF spraying using two sets of parameters, one optimized for CoNiCrAlY powder, the other for fine alumina. Coatings produced under the latter conditions were found to be porous, which can be attributed to a low degree of melting in the dispersed alumina. Isothermal oxidation testing at 1373 K for up to 1000 h in air caused oxidation not only at the surface, but also inside the coatings due to the movement of oxygen through the pores. The coatings deposited under the other set of parameters, i.e., at higher power levels, were free of pores. Isothermal oxidation tests were also carried out on coatings produced from the commercial powder, in this case, by HVOF and as well as vacuum plasma spraying. The coatings obtained by HVOF spraying were found to have a thinner thermally grown oxide layer than not only the VPS coatings, but also conventional metallic bond coats. Internal oxidation in the HVOF coatings is due to insufficient cohesion of the spray particles. Furnace cycling tests were conducted on specimens with an additional ceramic thermal barrier coating. Specimens with VPS bond coats produced from commercial oxide-dispersed powder achieved almost same number of cycles to delamination as specimens with conventional metal bond coats.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 65-70, May 4–7, 2009,
Abstract
View Paper
PDF
In this investigation, two complex perovskite powders, Ba(MgTa)O and Ta(AlMgT)O, are deposited by atmospheric plasma spraying and evaluated for use as thermal barrier layers. Process parameters are optimized to provide sufficient melting without causing the formation of secondary phases. Deposited coatings are assessed based on composition, morphology, porosity, and thermal cycling lifetime. It is shown that the nature of the starting powders has a significant effect on the lifetime and performance of perovskite-based thermal barrier coatings.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 859-864, June 2–4, 2008,
Abstract
View Paper
PDF
Advanced ceramic materials of perovskite structure have been developed for potential application in thermal barrier coating systems, in an effort to improve the properties of the pre-existing ones like yttria stabilized zirconia. Yb 2 O 3 and Gd 2 O 3 doped strontium zirconate (SrZrO 3 ) and barium magnesium tantalate (Ba(Mg 1/3 Ta 2/3 )O 3 ) of the ABO 3 and complex A(B’ 1/3 B” 2/3 )O 3 systems respectively, have been synthesized using ball milling prior to solid state sintering. Thermal and mechanical investigations show desirable properties for high temperature coating applications. On atmospheric plasma spraying, the newly developed TBCs reveal promising thermal cycle lifetime above 1300°C.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1050-1055, June 2–4, 2008,
Abstract
View Paper
PDF
One major shortcoming of thermal barrier coatings applied to gas turbine components is the spallation of the ceramic coating under mechanical stress developing during thermal cycling environments. In order to study the evolution of failure and the expectancy of lifetime under realistic conditions cycling burner rig tests are a well established matter of choice. In the same way the techniques of acoustic emission (AE) testing and infrared (IR) thermography have been widely proofed to provide insight to microscopic crack formation and localization of hidden delaminations, respectively. Both techniques can be utilized to record the evolution of microscopic and macroscopic defects in advance to the apparent failure. Indirectly, this knowledge allows to verify and to improve lifetime models. The aim of this study is to expand the use of AE and IR testing as a rugged in-situ monitoring tools for combustion driven cycling rigs and to provide spatial resolved information on thermal load and failure evolution of the TBC in those tests. For a successful application to an experiment using a gas fired and air cooled burner rig some it is necessary to overcome some limitations which are mainly due to the high level of interfering signals under those experimental conditions.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 489-494, May 15–18, 2006,
Abstract
View Paper
PDF
A new type of thermal barrier coating (TBC) based on metal-glass composite (MGC) has been recently presented. Beside the availability of conventional manufacturing routes of the coating, e.g. by vacuum plasma spraying (VPS) or slip casting, there are two main advantages of the new TBC: The thermal expansion coefficient can be easily adjusted to the substrate by changing the metal to glass ratio of the composite and the severe oxidation of the bondcoat layer can be reduced due to the gastightness of the glassy phase. Nevertheless, oxidation of the metal phases cannot be fully suppressed up to now. Concepts for a multilayer system and an improved oxidation resistance of a MGC based on suitable heat treatments and on alternative glass compositions have been developed. Results from isothermal oxidation experiments and from thermal cycling in burner rig facilities will be discussed.