Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
D. W. Smith
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Automated Sample Preparation of Low-k Dielectrics for FESEM
Available to Purchase
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 231-232, November 6–10, 2005,
Abstract
View Papertitled, Automated Sample Preparation of Low-k Dielectrics for FESEM
View
PDF
for content titled, Automated Sample Preparation of Low-k Dielectrics for FESEM
The SiLK resins, composed of aromatic hydrocarbons, are a family of highly cross-linked thermoset polymers with isotropic dielectric properties. Patterning of SiLK for high aspect ratio copper interconnects has depended on reactive ion etching with oxygen/nitrogen gas mixtures. Reactive ion etching is therefore also accomplished with reducing plasmas such as nitrogen/hydrogen. An additional plasma cleaning step can be inserted after the reactive ion etching (RIE) step, so that any residual contamination is removed prior to imaging or final sputter coating. Automated sample preparation of microelectronic materials containing high and low-k dielectrics for FESEM is accomplished in this article by combining these techniques: plasma cleaning, ion beam etching, and reactive ion etching. A single RIE chemistry was effective in etching both dielectrics as well as delineating the other phases present.
Proceedings Papers
Recent Developments in Automated Sample Preparation for FESEM
Available to Purchase
ISTFA2003, ISTFA 2003: Conference Proceedings from the 29th International Symposium for Testing and Failure Analysis, 288-296, November 2–6, 2003,
Abstract
View Papertitled, Recent Developments in Automated Sample Preparation for FESEM
View
PDF
for content titled, Recent Developments in Automated Sample Preparation for FESEM
Standard analytical practice in the semiconductor industry depends on fast, efficient and reliable sample preparation prior to FESEM. “In lens” imaging technology and orientation mapping (EBSD) demand sample surfaces free of physical damage and residual contamination. An integrated preparation tool has been developed that incorporates the functionality necessary for argon – oxygen plasma cleaning, ion beam etching (IBE), reactive ion beam etching (RIBE), reactive ion etching (RIE), and ion beam sputter coating (IBSC). Control, monitoring and sequential automation of the processes is accomplished through a novel combination of software and hardware. FESEM results for Al and Cu based microelectronic materials will be discussed, as well as EBSD results for bulk metals. Improvements in throughput and subsequent materials characterization will be demonstrated.