Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-13 of 13
D. Sporer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 143-148, May 21–24, 2012,
Abstract
View Paper
PDF
Compressor abradables coming into operational contact with bare, un-tipped titanium alloy rotor blades over a wide range of incursion conditions require excellent cuttability in order to avoid blade tip damage by wear and over-heating. This is more easily achieved for low temperature systems that can make use of low shear strength aluminum matrices than for compressor abradables operating closer to the maximum allowable temperature of advanced titanium alloy blade materials. In this case the rotor path linings will have to incorporate higher temperature resistant Ni and Co alloy matrices. To that end the availability of abradable coatings capable of operating at up to 550°C while showing little thermal ageing effects and excellent abradability over their entire service life can influence the compressor blade material selection and therefore compressor weight and performance characteristics. This paper provides an overview of titanium blade friendly compressor abradable concepts. Particular emphasis will be placed on the abradability of in-service and next-generation coatings designed for use up to the temperature capability of Ti blade rotor materials and beyond. Candidate coatings are also screened for other performance criteria such as thermal cyclic resistance and ageing behaviour.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 330-335, June 2–4, 2008,
Abstract
View Paper
PDF
Abradable seals have been used in jet engines since the late 1960's. Today they are seeing applications in low pressure and high pressure sections of compressors as well as the high pressure turbine module of jet engines. Clearance control systems using abradable coatings are also gaining ever more attention in industrial and steam turbine applications. Thermal spraying is a relatively simple and cost effective means to apply abradable seals. Abradable coatings work by minimizing gaps between rotating and stationary components by allowing the rotating parts to cut into the stationary ones. Typically plasma and combustion spray processes are used for applying abradable coatings. The types of coatings employed in the HP turbine are zirconia based abradable material systems with polymer and, in some cases, solid lubricant additions such as hexagonal boron nitride. The coatings are designed to work at service temperatures of up to 1200°C. Types of matrix materials used in the low and high pressure sections of the compressor are aluminum-silicon, nickel and MCrAlY based systems. These compressor type systems typically also contain fugitive phases of polymer and/or solid lubricants such as hexagonal boron nitride or graphite. Operating temperature, depending on the material of choice, can be up to 750°C. Regardless of the specific application, fugitive phases and porosity are needed for abradable coatings. Polymers are used to create and control porosity in plasma sprayed coatings, a critical design requirement in adjusting abradability and erosion properties of thermal spray coatings. Combustion spray coatings generate porosity through the lower deposition velocities and temperatures compared to plasma and typically do not need polymer phases. Solid lubricants are added to help weaken the structure of thermal spray coatings and reduce frictional heating and material transfer to the blade.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 336-339, June 2–4, 2008,
Abstract
View Paper
PDF
In modern jet engines, the efficiency of the compressor stages is highly dependent on the clearance between blade tip and casing. In order to improve efficiency of gas turbines (i.e. areo engines as well as land based gas turbines), the gap between the rotating turbine blades and casing has to be minimized. Any increase in the gap results in power loss. Abradable coatings permit a minimization of the clearance and control of the over-tip leakage by allowing the blade tips to cut into the coating. Thermal sprayed abradable coatings aim at a well balanced profile of properties relevant for the application as abradable seals. Amongst others these include: abradability, ageing resistance, corrosion and oxidation resistance, surface finish and bond strength to substrate materials. In this work, abradable coatings consisting of a multiphase material, comprising a metal matrix in addition to a solid lubricant as well as a defined level of porosity, were developed using the Triplex Pro 200 (Sulzer Metco, Wohlen, Switzerland) in order to increase the reproducibility and deposition efficiency. Additionally the influence of the process parameters on coating characteristics such as porosity, hardness and, resulting from this, coating erosion properties and abradability was investigated.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 750-756, June 2–4, 2008,
Abstract
View Paper
PDF
In order to improve gas turbine performance it is possible to decrease back flow gases in the high temperature combustion region of the turbo machine reducing shroud/rotor gap. Thick and porous TBC systems and composite CoNiCrAlY/Al 2 O 3 coatings made by Air Plasma Spray (APS) and composite NiCrAlY/graphite coatings made by Laser Cladding were studied as possible high temperature abradable seal on shroud. Oxidation and thermal fatigue resistance of the coatings were assessed by means of isothermal and cyclic oxidation tests. Tested CoNiCrAlY/Al 2 O 3 and NiCrAlY/graphite coatings after 1000 hours at 1100°C do not show noticeable microstructural modification. The oxidation resistance of new composite coatings satisfied Original Equipment Manufacturer (OEM) specification. Thick and porous TBC systems passed the thermal fatigue test according to the considered OEM procedures. According to the OEM specification for abradable coatings the hardness evaluation suggests that these kinds of coatings must be used with abrasive tipped blades. Thick and porous TBC coating has shown good abradability using tipped blades.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1027-1031, June 2–4, 2008,
Abstract
View Paper
PDF
The newly designed abradable coatings are usually validated by rig tests, where samples are rubbed by the contact of a dummy blade with given running speed and incursion rate, simulating actual working conditions in an aircraft engine. The aim of this work was to develop a model of abradable coating rig tests, allowing extensive studies on the influence of coating properties and test conditions on the thermal behaviour of the system. The proposed model includes several steps implementing different numerical tools. Firstly, a relevant structural description of an abradable coating is obtained from micrographs, using an original image analysis route. FE (Finite Element) calculations based on this description allow then to estimate the coefficients of an anisotropic elastic law of mechanical behaviour. Furthermore, a plasticity law is deduced from a FE simulation of the material HR15Y hardness. These parameters are used as input of a FE simulation of a single blade-to-coating rubbing hit, resulting in calculated stresses and temperatures. Finally a global approach of the complete abradability test, based on the results obtained from the simulation of a single hit and on various assumptions, provides predictions of the blade and coating temperature variations versus time during a complete abradability test.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1032-1035, June 2–4, 2008,
Abstract
View Paper
PDF
Abradable coatings are widely used in aerospace turbine engines to improve seal performance between rotating and stationary parts and thus the engine efficiency. As they are elaborated by thermal spraying of composite powders, these materials are highly heterogeneous. Their behaviour in working conditions is quite complex and not fully understood. This study contributes to a better knowledge of the mechanical behaviour of a range of abradable coatings. Finite Element calculations were derived from the analysis of micrographs and allowed to estimate the coefficients of an anisotropic elastic law of behaviour. Several models were investigated in the case of an AlSi-PE (Polyester) coating. As the PE % appeared to be a determinant factor, its influence was quantified ranging from 0% to 100%, using virtual micrographs deduced from the original ones. The computed Young's moduli Ex (in coating longitudinal direction) were quite consistent, considering the hypotheses made. An empirical relationship giving the variation law of Ex versus the PE % was suggested and applied to predict the modulus Ex of a real coating, which was close to the measured value.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1056-1061, June 2–4, 2008,
Abstract
View Paper
PDF
Abradable seals are used in aerospace applications to control the overtip leakages between the blades of an engine rotor and its static parts. To achieve the combination of properties required, these seals have been developed with thermally sprayed coatings and are generally elaborated from a range of two or three phase powder mixtures. In the present study, the thermal conductivity of thermally sprayed AlSi/Polyester abradable coatings produced with Metco 601 NS and Durabrade 1605 powders was measured and investigated using finite element and finite difference methods based on two-dimensional structures obtained from micrographs. The computed values were compared to the experimental results.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 495-500, May 14–16, 2007,
Abstract
View Paper
PDF
Abradable seals have been used in jet engines since the late 1960's. Today abradable seals are seeing applications not only in low pressure and high pressure sections of the compressor but also in the high pressure turbine module of jet engines and are gaining ever more attention in industrial gas turbines. Thermal spraying is a relative simple and cost effective means to apply abradable seals. These work by minimizing gaps between rotating and stationary components by allowing the rotating parts to cut into the stationary ones. The types of coatings employed are zirconia based abradable material systems with polymer and, in some cases, hexagonal boron nitride additions. The coatings are designed to work at service temperatures of up to 1200 °C. The objective of this paper is to review various types of commercial and experimental ceramic abradable systems and to assess their performance profiles. The paper will review yttria stabilized zirconia based systems with modified polymer additions and with variable particle sizes of the ceramic phase. Alternative stabilizers and their influence on key coating properties such as thermal shock resistance and abradability will be studied. The paper will also review the influence of plasma spray parameters on coating properties and study the general influence of coating porosity on coating erosion properties and abradability.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 723-726, May 14–16, 2007,
Abstract
View Paper
PDF
Process optimization and innovative material applications gain more and more interest under the aspect of continuously increasing functional and structural demands on thermal sprayed coatings. With the cascaded triple arc plasma gun generation, the atmospheric plasma spraying process was advanced by delivering enhanced plasma stability and, associated with this, higher deposition efficiency. The TriplexPro 200 is the latest version of a three cathode plasma spraying system on the market and offers distinctly higher particle velocities, due to its advanced nozzle design. As a result of the higher particle velocities, lower particle oxidation and higher coating density can be realized. In order to increase the corrosion protection of metallic coatings and the thermal properties of TBCs, the aim of the work performed is a parametric study to deposit advanced coating systems for high temperature applications.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1083-1088, May 15–18, 2006,
Abstract
View Paper
PDF
In modern jet engines, the efficiency of the compressor stages is highly dependent upon the clearance between housing and rotating compressor blades. To control the over-tip leakage, abradable coating systems are applied on the housing. In the high pressure compressor they typically consist of a thermal sprayed multiphase material, comprising a metal matrix combined with a dislocator and/or a solid lubricant as well as a defined level of porosity. In this study, novel material systems have been sprayed via the plasma and flame spray process and compared to reference materials. Resulting microstructures have been analyzed as well as important coating characteristics evaluated, including coating hardness and erosion resistance. Furthermore rig tests were performed to analyse the coatings abradability behaviour under different operation conditions of the compressor.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1480-1484, May 2–4, 2005,
Abstract
View Paper
PDF
Abradable coatings are located on the stationary parts of gas turbines, in front of blades, which cut a track in them. This has to be achieved with minimum wear of the blades, in order to control the over-tip leakage. These coatings are generally deposited by thermal spraying of composite powders comprising a metal base, a polymer filler generating porosities and a dislocator such as hBN. The very demanding properties are nowadays adjusted using rig tests, where samples are rubbed by the contact of a dummy, simulating actual working conditions in an aircraft engine. Several types of behaviour are usually described, but few numerical data are produced from these tests. Only the blade wear (or metal transfer) is generally measured. As the understanding of contact phenomena is fundamental for the development of predictive models allowing the design of more performing materials, a comprehensive characterization process of the rub path was developed. The study was based on a topological survey made by laser profilometry, giving three-dimensional maps. These maps were then processed by image analysis and several parameters were computed, like surface roughness and parameters giving information on the shape and orientation of the holes or grooves in the rubbed surface of the samples.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 610-614, May 2–4, 2005,
Abstract
View Paper
PDF
The efficiency of gas turbines is highly dependent upon the clearance between compressor housing and rotating blades. Abradable seal coatings are employed to minimize the clearance and control the over-tip leakage by allowing the blade tips to cut into the coating and herewith implementing a method of self-adjustment. These coatings consist of a thermally sprayed multiphase material, comprising a metal matrix, a dislocator and a defined level of porosity. Thermally sprayed abradable linings aim at a well balanced profile of properties relevant for the application as abradable seals. Amongst others these include: abradability, ageing resistance, corrosion and oxidation resistance as well as surface finish and bond strength to substrate materials. Due to the high demands in aircraft industry, the coating properties also have to match strict requirements with regards to quality control. Hence the spraying process has to be stable and well controlled. In this work, an APS sprayed abradable coating was sprayed with different sets of parameters and analysed by an on-line diagnostic system. The coating microstructure and properties were evaluated and related to the diagnostic results.