Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
D. Parkot
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 762-767, May 4–7, 2009,
Abstract
View Paper
PDF
In order to homogenize the properties of APS sprayed coatings, the spray process was investigated using numerical simulations combined with innovative diagnostic techniques. The process was subdivided into three areas: the plasma torch, the free jet, and coating formation. By simulating these areas separately and combining the results, appropriate process parameters for homogenized coatings were obtained. For a comprehensive computation of coating formation which, besides the impact, flattening, and solidification of particles, includes the mechanical properties of the coating, a volume of fluid algorithm is coupled with a finite element model. In order to verify the modeling of the plasma jet and to provide input data for the coating formation, diagnostic efforts were concentrated on measuring the gas temperature of the plasma as well as particle shape, velocity, and temperature. The results of spatially resolved 3D analysis employing an innovative tomography system are presented and compared with the numerical results.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 548-552, June 2–4, 2008,
Abstract
View Paper
PDF
In this work numerical simulation results of the impact and solidification of molten PYSZ-particles on flat and rough substrate surfaces are presented. This investigation deals with the effect of the particle state prior impact, particle diameter and substrate roughness, on splats spreading behaviour and final morphology. The particles have a diameter range between 20 – 60 µm. Particle initial conditions prior to impact: speed, temperature and melting state, are taken from previous simulation modelling approaches of particle accelerating and heating. Simulations of fluid dynamics, heat transfer and solidification during the particle impact were performed using computational fluid dynamics. Tracing of free surfaces determinates volume of fluid method. Heat flux at the particle-substrate interface and temperature dependent liquid phase viscosity of PYSZ are studied and discussed. Simulated splat morphologies are compared with experimentally obtained splats.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 242-247, May 14–16, 2007,
Abstract
View Paper
PDF
A new cold spray process for a combustion-free spraying is studied experimentally and by modeling and simulation. The high particle velocity at the front of the substrate is achieved by using the shock tube technology. The particles have been injected downstream of the nozzle throat into a supersonic nozzle flow. The shock tube of 6.5 m length and 56 mm inner diameter provides the necessary reservoir conditions for the nozzle flow. The measurements of the particle velocity made by a laser Doppler anemometry (LDA) setup showed that the maximum velocity amounts to 1220 m/s for stainless steel particles of 15 µm diameter. The CFD-Code (Fluent) is first verified by a comparison with available numerical and experimental data for gas and gas-particle flow fields in a long Laval-nozzle. The good agreement implied the great potential of the new dynamic process concept for cold gas coating applications. Then the flow fields in the short Laval nozzle designed and realized by the Shock Wave Laboratory (SWL) have been investigated. The gas flow for experimentally obtained stagnation conditions has been simulated. The gas-particle flow without and with the influence of the particles on the gas flow has been calculated by the Surface Engineering Institute (IOT) and compared with experiments. The influence of the injection parameters on the particle velocities has been investigated as well.