Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
D. Dezert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 189-196, May 3–5, 2010,
Abstract
View Paper
PDF
During the past 20 years, Technogenia Inc. has imposed laser cladding for the enhancement of wear parts and repairs under the trade name of LASERCARB. In spite of the technical differences and advantages, laser cladding has been perceived as a competitive technology to thermal spraying. However, it has had a slow acceptance in the surface engineering industry. This article is a technical and economical update on LASERCARB. New laser, processed materials, capabilities, performances and trends are presented. Economical approaches include background market analysis, cost analysis and technology cost trend. Finally, a processes comparison eases the positioning technology to each other and highlights supplemental aspects.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1081-1084, May 2–4, 2005,
Abstract
View Paper
PDF
Wear resistance of materials in very aggressive environment of different industrial sectors like drilling, mining, cutting, etc, appears to be critical and many efforts have been made to limit the major economic loss that represents a broken or damaged tool. The objective of the CLADIAM project (G5ST-CT-2002-50179) is to develop a cladding technique to coat complex parts based on an innovative cladding material composed of diamond pellets and cast spherical tungsten carbide particles using an automated high power diode laser (HPLD) equipment. The result of these two and a half years of work has led to the finalization of following techniques: A pelletizing alloy that takes into account the constraints of laser cladding, Enrobing of diamond particles to avoid their damage, An industrial technique, technically and economically efficient, of laser cladding that allows the realization of complex shapes. The combination of a new technique of wear and abrasion tests has led to the characterization of the obtained cladding. The results have been compared with the tests on industrial parts in severe and even extreme wear conditions. The development of this new cladding technology has been possible thanks to the use, the characterization and the optimization of specific cladding nozzles associated with the special beam of high power diode laser. The results obtained are very encouraging and open the doors to new claddings that combine the specific advantages of diamond and tungsten carbides for the nature of cladding, but also the fineness of the structure, the improvement of behaviour in wear conditions, the small thermal impact of the parts, some of the well known advantages of laser cladding.