Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Christophe Guerin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 411-419, November 12–16, 2023,
Abstract
View Papertitled, Nanoprobing on an MRAM Cell, Following a Backside Opening, to Extract Logical Data
View
PDF
for content titled, Nanoprobing on an MRAM Cell, Following a Backside Opening, to Extract Logical Data
The direct measurement of the memory state (i.e. bit at “0” or at “1”) on single magnetic tunnel junction (MTJ) in a commercial magnetic random access memory (MRAM) remains challenging. In this paper, we propose a probing approach to investigate the MTJ resistance and by this way determine the memory state. To reach this goal, the MRAM device needs to be prepared to create an electrical access to both sides of the MTJs. The suitable methodology consists in a backside preparation routine that creates a bevel allowing us to access the bottom side of the MTJs through vias and the top side to the bitlines. After that, two approaches are discussed to establish the electrical connection. First described is the nanoprobing technique where the electrical connection is created by two nanometric tips positioned in contact on vias and bitlines thanks to a scanning electron microscope. It is then possible to collect the current flowing through the MTJs and to evaluate the resistance. A resistance around 12 kΩ and 14 kΩ were determined for “0” and “1” bits respectively, which is in agreement with literature. Secondly, these measurements will be compared to those resulting from a near-field probing experiment done in a conductive mode. A resistance around 19 kΩ and 24 kΩ were determined for “0” and “1” bits respectively. The use of both methods allows for a cross-reference between the resistance values and a discussion on the advantages and drawbacks of both probing techniques.
Proceedings Papers
ISTFA2006, ISTFA 2006: Conference Proceedings from the 32nd International Symposium for Testing and Failure Analysis, 86-93, November 12–16, 2006,
Abstract
View Papertitled, Direct Measurements of Charge in Floating Gate Transistor Channels of Flash Memories Using Scanning Capacitance Microscopy
View
PDF
for content titled, Direct Measurements of Charge in Floating Gate Transistor Channels of Flash Memories Using Scanning Capacitance Microscopy
Failure Analysis has to deal with challenging questions about stored charges in floating gates in Non Volatile Memories (NVM) when reading does not give expected data. Access to this information will help to understand failure mechanisms. A method to measure on-site programmed charges in Flash EEPROM devices is presented. Scanning Capacitance Microscopy (SCM) is used to directly probe the carrier concentration on Floating Gate Transistor (FGT) channels. The methodology permits mapping channels and active regions from the die backside. Transistor charged values (ON/OFF) are measured and localized with a 15 nm resolution. Both preparation and probing methods are discussed. Applications are demonstrated on two different Flash technologies: a two-transistor cell (2T-cell) from Atmel and a one-transistor cell (1T-cell) from STMicroelectronics.