Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Chris Eddleman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Advanced Scan Diagnosis Based Fault Isolation and Defect Identification for Yield Learning
Available to Purchase
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 501-509, November 6–10, 2005,
Abstract
View Papertitled, Advanced Scan Diagnosis Based Fault Isolation and Defect Identification for Yield Learning
View
PDF
for content titled, Advanced Scan Diagnosis Based Fault Isolation and Defect Identification for Yield Learning
Yield analysis of sub-micron devices is an ever-increasing challenge. The difficulty is compounded by the lack of in-line inspection data as many companies adopt foundry or fab-less models for acquiring wafers. In this scenario, failure analysis is increasingly critical to help drive yields. Failure analysis is a process of fault isolation, or a method of isolating failures as precisely as possible followed by identification of a physical defect. As the number of transistors and metal layers increase, traditional fault isolation techniques are less successful at isolating a cause of failures. Costs are increasing due to the amount of time needed to locate the physical defect. One solution to the yield analysis problem is scan diagnosis based fault isolation. Previous scan diagnosis based techniques were limited with little information about the type of fault and confidence of diagnosis. With new scan diagnosis algorithms it is now possible to not only isolate, but to identify the type of fault as well as assigning a confidence ranking prior to any destructive analysis. This paper presents multiple case studies illustrating the application of scan diagnosis as an effective means to achieve yield enhancement. The advanced scan diagnostic tool used in this study provides information about the fault type as well as fault location. This information focuses failure analysis efforts toward a suspected defect, decreasing the cycle time required to determine root cause, as well as increasing the over all success rate.