Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Chih-Ying Tasi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2009, ISTFA 2009: Conference Proceedings from the 35th International Symposium for Testing and Failure Analysis, 230-233, November 15–19, 2009,
Abstract
View Papertitled, A Novel Technique of Device Measurement after Cross-Sectional FIB in Failure Analysis
View
PDF
for content titled, A Novel Technique of Device Measurement after Cross-Sectional FIB in Failure Analysis
A dual beam FIB (Focused Ion Beam) system which provides the ion beam (i-beam) and electron beam (e-beam) function are widely used in semiconductor manufacture for construction analysis and failure cause identification. Although FIB is useful for defect or structure inspection, sometimes, it is still difficult to diagnose the root cause via FIB e-beam image due to resolution limitation especially in products using nano meter scale processes. This restriction will deeply impact the FA analysts for worst site or real failure site judgment. The insufficient e-beam resolution can be overcome by advanced TEM (Transmission Electron Microscope) technology, but how can we know if this suspected failure site is a real killer or not when looking at the insufficient e-beam images inside a dual beam tool? Therefore, a novel technique of device measurement by using C-AFM (Conductive Atomic Force Microscope) or Nano-Probing system after cross-sectional (X-S) FIB inspection has been developed based on this requirement. This newly developed technology provides a good chance for the FA analysts to have a device characteristic study before TEM sample preparation. If there is any device characteristic shift by electrical measurement, the following TEM image should show a solid process abnormality with very high confidence. Oppositely, if no device characteristic shift can be measured, FIB milling is suggested to find the real fail site instead of trying TEM inspection directly.