Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Chaoyue Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 469-475, May 26–29, 2019,
Abstract
View Paper
PDF
Super wear-resistant aluminum-based metal matrix composite (MMC) coatings were produced using cold spraying. Cu-Ni coated diamond and pure diamond particles were used as reinforcing agents. Test results show that the metallic Cu-Ni shell served as a buffer layer, preventing the fracture of diamond particles upon impact as occurred with the uncoated diamond. The coated diamond particles were also found to have a higher deposition efficiency due to metallurgical bonding between the Cu shell and Al matrix. Under tribological testing, all coatings performed well, but those reinforced with the coated diamond showed higher wear resistance due to higher diamond content and involvement of Cu and Ni.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 476-483, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the effect of heat treatment on the microstructure and tribological properties of TiB 2 -reinforced AlSi 10 Mg composite coatings produced by cold spraying. SEM and XRD analysis showed that the microstructure of the feedstock powder was well preserved in the as-sprayed material with uniformly distributed TiB 2 nanoparticles, some aggregated clusters, and a cellular-like network of fine eutectic Si particles embedded in an aluminum matrix. With increasing heat treatment temperature, the Si particles grew larger in size, but significantly fewer in number and a reduction in microhardness was observed due mainly to the elimination of the work hardening effect and coarsening of the Si particles.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 781-788, May 26–29, 2019,
Abstract
View Paper
PDF
In this work, hot isostatic pressing (HIP) is used to reduce interior defects, adjust the microstructure, and improve the tensile properties of cold-sprayed Ti6Al4V. Optical microscope and X-ray tomography were used to characterize pore morphologies and porosity evolution. XCT reconstructions show that fully dense Ti6Al4V alloy with an equiaxed microstructure were achieved. Tensile testing shows that strength and ductility were improved as well because of enhanced diffusion and resultant metallurgical bonding.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 802-809, May 26–29, 2019,
Abstract
View Paper
PDF
In this work, a novel additive manufacturing process was proposed and employed in the production of stainless steel components. The underlying concept is to use selective laser melting (SLM) to fabricate a core structure onto which basic features are added by cold spraying (CS), followed by heat treatment and finish machining. The microstructure and mechanical properties of as-fabricated and heat-treated parts were studied, and interfacial bonding between the SLM core and a typical CS feature was assessed. In the as-fabricated state, it is observed that the CS material has a dendritic structure similar to the feedstock, while the SLM core is characterized by cellular subgrains confined in coarse grain structures. Following heat treatment, interparticle boundaries are less well defined, equiaxed coarse grains and twinning appear, and the extremely fine subgrains in the SLM material are enlarged. Heat treatment is also shown to improve tensile strength in the CS material and interfacial bond strength between the CS features and SLM core.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 202-209, May 7–10, 2018,
Abstract
View Paper
PDF
In this work, advanced Al/diamond wear-resistance composites were fabricated by solid-state cold spray additive manufacturing using core-shell-structured diamond powders. Based on the experimental results and thorough discussion, it is found that core-shell-structured diamond powders were much easier to deposit than pure Al by cold spray, showing great potentials as feedstock for cold spraying. The deposition mechanism of the Al/diamond composites were dominated by the true metallic bonding between Al matrix and Cu layer, which is different from other conventual cold sprayed metal matrix composites. Tensile tests indicated that the tensile strength of the Al/diamond composites can be higher than cold sprayed pure Al. In addition, the Al/diamond composites had super wear-resistance performance. The wear rate was reduced by 17.8 times for the N 4-1 composite and by 37.5 times for the N 1-1 composite as compared with cold sprayed Al/Al 2 O 3 composite.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 262-269, May 7–10, 2018,
Abstract
View Paper
PDF
In this work, the bonding mechanism between Cu particle and substrates of Mg, Cu and stainless Steel (SS) was investigated by the direct observation of bonding interface on detached particle and substrate crater. In the cases of Cu/Cu and Cu/SS, dimple-like fractures were found on the detached Cu particle and substrate crater for the first time. Accompanying with EDS line scan and mapping results, such dimple fractures can be considered as the signs of strong metallurgical bonding. However, the bonding interface in case of Cu/Mg is smooth without signs of metallurgical bonding. Finite element analysis results revealed a ring of high contact pressure zone on the surface of particle and substrate, which is exactly the place where metallurgical bonding was observed. It can suggest that the high contact pressure zone is the dominant factor for the formation of metallurgical bonding on the oxide-free interface. The evolution of maximum contact pressure in different cases shows that the substrate hardness plays an important role during the single particle bonding. The present study provides a profound insight into the bonding mechanism of a single cold sprayed particle, which can give the guidance to the full deposition of cold sprayed coating.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 589-596, May 7–10, 2018,
Abstract
View Paper
PDF
For fabrication of high strength carbon nanotube (CNT) reinforced Al matrix composites, the uniform dispersion, strong interface bonding and high structural integrity of CNTs have been regard as the three most important issues. In this work, two distinct approaches, namely high shear dispersion (HSD) and shift-speed ball milling (SSBM), were applied to disperse CNTs (1.5 wt.%) into pure Al powders. These two kinds of CNTs/Al composite powders as well as pure Al powders (as comparison) were deposited onto stainless steel plates under the same processing parameters. The deposition efficiency, microstructure, as well as the structural integrity of CNTs in the coatings produced from different starting powders were comparatively investigated. According to the XRD and Raman analysis, the brittle Al 4 C 3 phase was not formed in both CNTs/Al composite coatings. Some structural damages of CNTs were found in both composite coatings, especially the one fabricated from HSD composite powder. The dispersion of CNTs onto Al particle surfaces by HSD approach did not achieve significant strengthening effect on the composite coatings, but adversely affect the metallic bonding of the particles. The microhardness of CNTs/Al composite coating produced from SSBM powders reached to ~115 HV0.1, showing a significant improvement compared to the pure Al coating. The strengthening mechanisms of the cold sprayed CNTs/Al composite coatings were also investigated.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 647-653, May 11–14, 2015,
Abstract
View Paper
PDF
Nowadays, the application of industrial robots in the field of thermal spray becomes gradually important. A desired coating quality depends on the factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. scanning step, spray angle, relative speed). Meanwhile, all these factors will affect the coating formation and the mass and heat transfer. As a result, the kinematic optimization from all these aspects is the key factor for thermal spray applications. In this study, the robot performance will be optimized from the aspect of torch installation on the robot. Robot kinematic parameters will be obtained from off-line programming software and analyzed by statistics method. The results showed that this method can optimize the robot performance from the view of robotic kinematics. It can also assign the amount of motion reasonably to each axis of the robot during the process, to achieve the constant relative scanning speed.