Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Chad Beamer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 44-50, September 14–16, 2021,
Abstract
View Paper
PDF
Hastelloy X is used in turbomachinery and petrochemical applications as it is designed for excellent oxidation and stress corrosion cracking resistance, strength, and stress rupture behavior. This alloy is now being printed via powder bed fusion processes as many industries have developed interests in the benefits additive manufacturing (AM) offers. However as-printed Hastelloy X suffers from material defect formation such as hot cracking. Hot isostatic pressing (HIP) is often applied to improve performance and reliability. Although the conventional HIP process has been shown to eliminate defects, the equipment is unable to cool at desired rates allowing the formation of excessive carbide precipitation, negatively influencing corrosion resistance and toughness. In turn the product is solution treated at a similar temperature while applying rapid gas cooling for performance requirements. With use of uniform rapid cooling available in modern HIP equipment, a high-pressure heat treatment can be applied offering the ability to perform both HIP and heat treatment in one piece of equipment. Microstructure and tensile properties are evaluated and compared to the conventional processing routes. The results demonstrate that the novel high pressure heat treatment approach offers a processing route that is equivalent to or better than conventional methods.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 343-348, October 15–17, 2019,
Abstract
View Paper
PDF
Austenitic stainless steels are carburized or nitrided (i.e., surface hardened) at low temperatures in order to maintain their superior corrosion resistance. Treatment temperature must be low enough to prevent precipitation in the diffusion zone, yet high enough to allow sufficient diffusion depths to meet design specifications. At these temperatures, prior machining processes can have a significant effect not only on diffusion, but also the surface hardness and corrosion resistance achieved. This paper presents practical examples showing how cutting, grinding, honing, and polishing processes influence the results of low temperature surface hardening treatments for stainless steel parts. It also discusses the influence of surface deformation and finish.